17.已知集合A={x|x2-x≤0},B={x|2x-1>0},則A∩B=( 。
A.[0,$\frac{1}{2}$)B.[0,1]C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

分析 先求出集合A,B,由此利用交集性質能求出A∩B.

解答 解:∵A={x|x2-x≤0}={x|0≤x≤1}=[0,1],集合B={x|2x-1>0}={x|x>$\frac{1}{2}$}=($\frac{1}{2}$,+∞)
∴A∩B=($\frac{1}{2}$,1],
故選:C

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知正三棱柱ABC-A1B1C1,D為AB上的中點.
(1)求證:平面C1CD⊥平面ADC1;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+$\frac{a}{x}$
(Ⅰ)討論函數(shù)f(x)的單調(diào)性
(Ⅱ)當x∈(1,+∞)時,f(x)$<\frac{x}{2}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若a>b,c>d,則下列不等式正確的是(  )
A.ac>bdB.a-b<d-cC.a-c>b-dD.ad<bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知定義在R上的函數(shù)f(x)=|x3-2x+1|,若方程f(x)-a|x-1|=0恰有4個互不相等的實數(shù)根,則所有滿足條件的實數(shù)a組成的集合為$\left\{{\left.{1,\frac{5}{4}}\right\}}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=log2(x+3)(x-5)的定義域是A,函數(shù)g(x)=x3+m在x∈[1,2]上的值域為B,又已知B⊆A,則實數(shù)m的取值范圍是( 。
A.(-∞,-11)∪(4,+∞)B.(-11,4)C.(-4,-3)D.(-∞,-4]∪[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系xOy中,曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù),0≤α≤π),以原點O為極點,x軸的正半軸為極軸,建立極坐標系.
(1)寫出C的極坐標方程;
(2)若A、B為曲線C上的兩點,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若球的表面積為16π,則球的體積為(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.$\frac{64π}{3}$D.$\frac{128π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=xsinx,則f($\frac{π}{11}$),f(-1),f(-$\frac{π}{3}$)的大小關系為( 。
A.f(-$\frac{π}{3}$)>f(-1)>f($\frac{π}{11}$)B.f(-1)>f(-$\frac{π}{3}$)>f($\frac{π}{11}$)C.f(-$\frac{π}{11}$)>f(-1)>f($\frac{π}{3}$)D.f($\frac{π}{3}$)>f($\frac{π}{11}$)>f(-1)

查看答案和解析>>

同步練習冊答案