分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問題轉(zhuǎn)化為a<$\frac{{x}^{2}}{2}$-xlnx在(1,+∞)恒成立,令g(x)=$\frac{{x}^{2}}{2}$-xlnx,(x>1),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(Ⅰ)∵定義域?yàn)椋?,+∞)
∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
①當(dāng)a≤0,f′(x)≥0,恒成立,
∴f(x)在定義域(0,+∞)單調(diào)遞增;
②當(dāng)a>0,當(dāng)x>a時,f′(x)>0,f(x)單調(diào)遞增;
當(dāng)0<x<a,f′(x)<0,f(x)單調(diào)遞減.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間:(a,+∞),單調(diào)遞減區(qū)間:(0,a);
(Ⅱ)x∈(1,+∞)時,f(x)$<\frac{x}{2}$恒成立,
即a<$\frac{{x}^{2}}{2}$-xlnx在(1,+∞)恒成立,
令g(x)=$\frac{{x}^{2}}{2}$-xlnx,(x>1),
則g′(x)=x-lnx-1,g″(x)=1-$\frac{1}{x}$>0,
故g′(x)遞增,g′(x)>g(1)=0,
故g(x)在(1,+∞)遞增,
故g(x)>g(1)=$\frac{1}{2}$,
故a≤$\frac{1}{2}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查轉(zhuǎn)化思想、分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y=0 | B. | x+4y-30=0 | ||
C. | x+y=0 或x+4y-30=0 | D. | x+y=0或x-4y-30=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-1 | B. | $\frac{1}{x-1}$ | C. | 2x-2 | D. | log2x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 36 | C. | 48 | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{2}$) | B. | [0,1] | C. | ($\frac{1}{2}$,1] | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com