11.若x,t滿足約束條件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為10,則a等于( 。
A.-3B.-10C.4D.10

分析 畫出滿足條件的平面區(qū)域,顯然直線過A(3,a)時,直線取得最大值,得到10=6+a,解出即可.

解答 解:畫出滿足約束條件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$的平面區(qū)域,如圖示:
,
顯然直線過A(3,a)時,直線取得最大值,
且目標(biāo)函數(shù)z=2x+y的最大值為10,則10=6+a,
解得:a=4,
故選:C.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$過點(0,$\sqrt{3}$),且離心率為$\frac{1}{2}$.
(1)求橢圓E的方程;
(2)若以k(k≠0)為斜率的直線l與橢圓E相交于兩個不同的點A,B,且線段AB的垂直平分線與兩坐標(biāo)軸圍成的三角形面積為$\frac{1}{16}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某數(shù)學(xué)教師對所任教的兩個班級各抽取20名學(xué)生進行測試,分?jǐn)?shù)分布如表:
分?jǐn)?shù)區(qū)間甲班頻率乙班頻率
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.3
[90,120)0.20.2
[120,150)0.20.1
(Ⅰ)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級有關(guān)系?
 優(yōu)秀不優(yōu)秀總計
甲班   
乙班   
總計   
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,D是直角△ABC斜邊BC上一點,AC=$\sqrt{3}$DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2$\sqrt{2}$,求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.隨著“全面二孩”政策推行,我市將迎來生育高峰.今年新春伊始,宜城各醫(yī)院產(chǎn)科就已經(jīng)是一片忙碌,至今熱度不減.衛(wèi)生部門進行調(diào)查統(tǒng)計,期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”;在市第一醫(yī)院,共有40個猴寶寶降生,其中20個是“二孩”寶寶;市婦幼保健院共有30個猴寶寶降生,其中10個是“二孩”寶寶.
(I)從兩個醫(yī)院當(dāng)前出生的所有寶寶中按分層抽樣方法抽取7個寶寶做健康咨詢.
①在市第一醫(yī)院出生的一孩寶寶中抽取多少個?
②若從7個寶寶中抽取兩個寶寶進行體檢,求這兩個寶寶恰出生不同醫(yī)院且均屬“二孩”的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有85%的把握認(rèn)為一孩或二孩寶寶的出生與醫(yī)院有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2>k00.40.250.150.10 
k00.7081.3232.072 2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$sinα=-\frac{2}{3}$且α在第三象限,則tan(π+α)等于( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$-\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知角θ的終邊經(jīng)過點M(-2,3),則sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,a=2且(2+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.我們要購買一套住房,采用個人住房公積金貸款或個人住房商業(yè)性貸款的方式借貸50萬元人民幣,期限為20年,銀行要求每月等額償還,問每月需要償還多少資金,貸款利率為6%.

查看答案和解析>>

同步練習(xí)冊答案