3.已知角θ的終邊經(jīng)過(guò)點(diǎn)M(-2,3),則sinθ=$\frac{3\sqrt{13}}{13}$.

分析 由條件利用任意角的三角函數(shù)的定義,求得sinθ的值.

解答 解:∵角θ的終邊經(jīng)過(guò)點(diǎn)M(-2,3),∴x=-2,y=3,r=$\sqrt{{x}^{2}{+y}^{2}}$=$\sqrt{13}$,
則sinθ=$\frac{y}{r}$=$\frac{3}{\sqrt{13}}$=$\frac{3\sqrt{13}}{13}$,
故答案為:$\frac{3\sqrt{13}}{13}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校在一次高三年級(jí)“診斷性”測(cè)試后,對(duì)該年級(jí)的500名考生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,成績(jī)的頻率分布表及頻率分布直方圖如圖所示,規(guī)定成績(jī)不小于125分為優(yōu)秀.
(1)若用分層抽樣的方法從這500人中抽取4人的成績(jī)進(jìn)行分析,求其中成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(2)在(1)中抽取的4名學(xué)生中,隨機(jī)抽取2名學(xué)生參加分析座談會(huì),求恰有1人成績(jī)?yōu)閮?yōu)秀的概率.
區(qū)間人數(shù)
[115,120)25
[120,125)a
[125,130)175
[130,135)150
[135,140)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合P={x||x|<3,且x∈Z},Q={x|x(x-3)≤0,且x∈N},則P∩Q等于(  )
A.{0,1,2}B.{1,2,3}C.{1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若x,t滿足約束條件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為10,則a等于( 。
A.-3B.-10C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.當(dāng)a>1時(shí),不等式${log_a}(4-x)>-{log_{\frac{1}{a}}}x$的解集是( 。
A.(0,2)B.(0,4)C.(2,4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=x+\frac{a}{x}+b$且$f(1)=2,f(2)=\frac{5}{2}$.
(1)求f(x)的解析式并判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)性,并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知關(guān)于的不等式0≤x2+$\frac{7}{9}$x-$\frac{{2}^{t}}{({2}^{t}+1)^{2}}$<$\frac{2}{9}$對(duì)任意t≥1恒成立,則所有x的取值集合是{-1,$\frac{2}{9}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如果直線y=m與函數(shù)y=sinx,x∈[0,2π]的圖象只有一個(gè)交點(diǎn),則m=±1;有且只有兩個(gè)交點(diǎn),則m的取值范圍是(-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={1,2,3,4},B={x|x-1>1},則A∩B=( 。
A.{1,2}B.{2,3}C.{3,4}D.{2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案