設(shè)實(shí)數(shù)x,y滿足
x-4y+4≥0
2x-3y-2≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則log2
1
a
+
2
b
)的最小值為( 。
A、2
B、4
C、
1
2
D、3
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)取得最大值,確定a,b的關(guān)系,即可得到結(jié)論.
解答: 解:由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b

作出可行域如圖:
∵a>0,b>0,
∴直線y=-
a
b
x+
z
b
的斜率為負(fù),且截距最大時(shí),z也最大.
平移直線y=-
a
b
x+
z
b
,由圖象可知當(dāng)y=-
a
b
x+
z
b
經(jīng)過點(diǎn)B時(shí),
直線的截距最大,此時(shí)z也最大.
x-4y+4=0
2x-3y-2=0
,解得
x=4
y=2
,即B(4,2).
此時(shí)z=4a+2b=1,
1
a
+
2
b
=(
1
a
+
2
b
)(4a+2b)=4+4+
2b
a
+
8a
b
≥16,
當(dāng)且僅當(dāng)2a=b時(shí)取=號(hào),
1
a
+
2
b
最小值為16,
則log2
1
a
+
2
b
)的最小值為log216=4,
故選:B
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的基本方法,利用基本不等式求
1
a
+
2
b
的最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=a,a2=b,前n項(xiàng)的和Sn滿足等式Sn+2-(1+r)Sn+1+rSn=0(n≥1),其中a,b,r均為非零整數(shù).
(1)求{an}為常數(shù)列的充要條件;
(2)求{an}為等比數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=-
x2
|x|
+x2的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,則n的所有可能值為( 。
A、3B、4C、3和4D、2和5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1,2,2,3,3,3,4,4,4,4,…的第15項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
1
2
cos6°-
3
2
sin6°,b=2sin13°cos13°,c=
1-cos50°
2
,則有( 。
A、a>b>c
B、a<b<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosα-
2
3
,-1),
n
=(sinα,1),
m
n
為共線向量,且α∈[-
π
2
,0]
(Ⅰ)求sinα+cosα;
(Ⅱ)求
cos(-
π
2
-α)cos(4π-α)sin(α-3π)
sin(α+
1
2
π)sin(-4π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
0
1
3
1-
2
3
,點(diǎn)M(-1,1),N(0,2).求線段MN在矩陣A-1對(duì)應(yīng)的變換作用下得到線段M′N′的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近幾年出現(xiàn)各種食品問題,食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾。疄榱私馊呒膊∈欠衽c性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
 患三高疾病不患三高疾病合計(jì)

 
 
630

 
 

 
 

 
 
合計(jì)36
 
 

 
 
(1)請(qǐng)將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關(guān),
請(qǐng)計(jì)算出統(tǒng)計(jì)量K2,并說明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案