7.某公司生產(chǎn)三種型號(hào)的轎車,產(chǎn)量分別是1600輛、6000輛和2000輛,為檢驗(yàn)公司的產(chǎn)品質(zhì)量,現(xiàn)從這三種型號(hào)的轎車種抽取48輛進(jìn)行檢驗(yàn),這三種型號(hào)的轎車依次應(yīng)抽取8,30,10.

分析 由題意先求出抽樣比例$\frac{1}{200}$,再由此比例計(jì)算出在三種型號(hào)的轎車抽取的數(shù)目.

解答 解:因總轎車數(shù)為9600輛,而抽取48輛進(jìn)行檢驗(yàn),抽樣比例為$\frac{48}{9600}$=$\frac{1}{200}$,
而三種型號(hào)的轎車有顯著區(qū)別,根據(jù)分層抽樣分為三層按$\frac{1}{200}$比例,
∵“遠(yuǎn)景”型號(hào)的轎車產(chǎn)量是1600輛,應(yīng)抽取$\frac{1}{200}$×1600=8輛,
同樣,得分別從這三種型號(hào)的轎車依次應(yīng)抽取8輛、30輛、10輛.
故答案為:8,30,10.

點(diǎn)評(píng) 本題的考點(diǎn)是分層抽樣,即保證樣本的結(jié)構(gòu)和總體的結(jié)構(gòu)保持一致,按照一定的比例樣本容量和總體容量的比值,在各層中進(jìn)行抽。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.?dāng)?shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn
(3)設(shè)bn=$\frac{n+1}{(n+2)^{2}(10-{a}_{n})^{2}}$(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N+,都有Tn<$\frac{5}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知⊙O′:x2+(y+$\frac{\sqrt{6}}{3}$m)2=4m2(m>0)及點(diǎn)M(0,$\frac{\sqrt{6}}{3}$m),在⊙O′上任取一點(diǎn)M′,連接MM′,并作MM′的中垂線l,設(shè)l與直線O′M′交于點(diǎn)P,若點(diǎn)M′取遍⊙O′上的點(diǎn).
(1)求點(diǎn)P的軌跡C的方程.
(2)設(shè)直線l:y=k(x+1)(k≠0)與軌跡C相交于A,B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)D,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,求△OAB的面積取得最大值時(shí)軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\sqrt{3}$,則a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若x>0,y>0,且x+y>2,
(1)$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=3}\end{array}\right.$,$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\sqrt{2}}\end{array}\right.$時(shí),分別比較$\frac{1+y}{x}$和$\frac{1+x}{y}$與2的大小關(guān)系;
(2)依據(jù)(1)得出的結(jié)論,歸納提出一個(gè)滿足條件x、y都成立的命題并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在正方體ABCD-A1B1C1D1中,M為棱BB1的中點(diǎn),則下列結(jié)論錯(cuò)誤的是(  )
A.B1D∥平面MAC
B.B1D⊥平面A1BC1
C.二面角M-AC-B等于45°
D.異面直線BC1與AC所形成的角等于60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題:①已知f(x)在[a,b]上連續(xù),且${∫}_{a}^$f(x)dx>0,則f(x)>0;②應(yīng)用微積分基本定理有${∫}_{1}^{2}$$\frac{1}{x}$dx=F(2)-F(1),則F(x)=ln(-x);③${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx;④${∫}_{0}^{2π}$|sinx|dx=4.其中正確的是(  )
A.①②③④B.③④C.②③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知lgx-lg2y=1,則$\frac{x}{y}$的值為(  )
A.2B.5C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a,b∈R,則“a,b都等于0”的必要不充分條件為(  )
A.$\sqrt{{a^2}+{b^2}}≤0$B.a2+b2>0C.ab≠0D.a+b=0

查看答案和解析>>

同步練習(xí)冊(cè)答案