1.?dāng)?shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn
(3)設(shè)bn=$\frac{n+1}{(n+2)^{2}(10-{a}_{n})^{2}}$(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N+,都有Tn<$\frac{5}{64}$.

分析 (1)利用等差數(shù)列的定義及其通項(xiàng)公式即可得出;
(2)對(duì)an≥0,an<0,討論,再利用等差數(shù)列的前n項(xiàng)和公式即可;
(3)利用“裂項(xiàng)求和”與不等式的性質(zhì)即可得出.

解答 解:(1)∵數(shù)列{an}滿足an+2=2an+1-an(n∈N+),
∴數(shù)列{an}是等差數(shù)列,公差為d.
∵a1=8,a4=2,
∴2=8+3d,解得d=-2.
∴an=8-2(n-1)=10-2n.
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為An,則An=$\frac{n(8+10-2n)}{2}$=n(9-n).
令an≥0,解出n≤5.
∴當(dāng)n≤5時(shí),Sn=An=n(9-n),
當(dāng)n≥6時(shí),Sn=A5-a6-a6-…-an
=2A5-An
=2×5×(9-5)-n(9-n)
=n2-9n+40.
∴Sn=$\left\{\begin{array}{l}{9n-{n}^{2},n≤5}\\{{n}^{2}-9n+40,n≥6}\end{array}\right.$.
(3)證明:bn=$\frac{n+1}{(n+2)^{2}(10-{a}_{n})^{2}}$=$\frac{n+1}{(n+2)^{2}(2n)^{2}}$=$\frac{1}{16}(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})$$(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{16}[(1-\frac{1}{{3}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{4}^{2}})$+$(\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}})$+…+$(\frac{1}{(n-1)^{2}}-\frac{1}{(n+1)^{2}})$+$(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})]$
=$\frac{1}{16}(1+\frac{1}{4}-\frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}})$<$\frac{5}{64}$.
∴對(duì)于任意的n∈N+,都有Tn<$\frac{5}{64}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)f(x)是周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x,則$f({-\frac{5}{2}})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1.若對(duì)任意m,n∈[-1,1],m+n≠0都有[f(m)+f(n)](m+n)>0.
(1)判斷函數(shù)f(x)的單調(diào)性,并說(shuō)明理由;
(2)若$f(a+\frac{1}{2})+f(-3a)<0$,求實(shí)數(shù)a的取值范圍;
(3)若不等式f(x)≤3-|t-a|a對(duì)所有x∈[-1,1]和a∈[1,3]都恒成立,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列命題正確的個(gè)數(shù)有( 。
①若函數(shù)f(x)=x3+ax2-bx+a2在x=1處有極值10,則a=4,b=11或a=-3,b=-3;
②當(dāng)x>0且x≠1時(shí),有l(wèi)nx+$\frac{1}{lnx}$≥2;
③在數(shù)列{an}中,a1=1,Sn是其前n項(xiàng)和,且滿足Sn+1=$\frac{1}{2}$Sn+2,則{an}是等比數(shù)列;
④若函數(shù)y=f(x+$\frac{3}{2}$)為R上的奇函數(shù),則函數(shù)y=f(x)的圖象一定關(guān)于點(diǎn)F($\frac{3}{2}$,0)成中心對(duì)稱.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.以下命題中:
①p∨q為真命題,則p與q均為真命題;
②${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx=$\frac{π}{4}$-$\frac{1}{2}$;
③(a+b+c)9展開(kāi)式中a4b3c2的系數(shù)為1260;
④已知函數(shù)f(x)=-x-x3.x1,x2,x3∈R.且x1+x2>0,x2+x3>0,x3+x1>0.則f(x1)+f(x2)+f(x3)的值恒為負(fù);
⑤“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0“的充分條件.
其中是真命題的是②③④⑤(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,已知b=2$\sqrt{2}$,c=$\sqrt{6}+\sqrt{2}$,B=45°,C=75°,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.空間中四點(diǎn)可確定的平面有(  )
A.1個(gè)B.3個(gè)
C.4個(gè)D.1個(gè)或4個(gè)或無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若$α∈(\frac{π}{2},π)$,且sinα=$\frac{3}{5}$,則cosα=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某公司生產(chǎn)三種型號(hào)的轎車,產(chǎn)量分別是1600輛、6000輛和2000輛,為檢驗(yàn)公司的產(chǎn)品質(zhì)量,現(xiàn)從這三種型號(hào)的轎車種抽取48輛進(jìn)行檢驗(yàn),這三種型號(hào)的轎車依次應(yīng)抽取8,30,10.

查看答案和解析>>

同步練習(xí)冊(cè)答案