【題目】把下列演繹推理寫成三段論的形式.
(1)在標準大氣壓下,水的沸點是100℃,所以在標準大氣壓下把水加熱到100℃時,水會沸騰;
(2)一切奇數(shù)都不能被2整除, 是奇數(shù),所以不能被2整除;
(3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),因此是周期函數(shù).
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】試題分析:(1)分割成大前提、小前提與結(jié)論三部分即可,(2)分割成大前提、小前提與結(jié)論三部分即可,(3)分割成大前提、小前提與結(jié)論三部分即可.
試題解析:(1)在標準大氣壓下,水的沸點是100℃,………………大前提
在標準大氣壓下把水加熱到100℃,…………………………………小前提
水會沸騰.………………………………………………………………結(jié)論
(2)一切奇數(shù)都不能被2整除, ……………………………………大前提
是奇數(shù), ……………………………………………………小前提
不能被2整除. ……………………………………………結(jié)論
(3)三角函數(shù)都是周期函數(shù),………………………………………大前提
是三角函數(shù),………………………………………………小前提
是周期函數(shù).………………………………………………結(jié)論
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ ,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)時,證明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的單調(diào)減區(qū)間是。
(1)求的解析式;
(2)若對任意的,關(guān)于的不等式在
時有解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的長軸長為4,焦距為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動點M(0,m)(m>0)的直線交x軸與點N,交C于點A,P(P在第一象限),且M是線段PN的中點,過點P作x軸的垂線交C于另一點Q,延長線QM交C于點B.
(i)設(shè)直線PM、QM的斜率分別為k、,證明為定值.
(ii)求直線AB的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時,f(x)=
(1)求f(-2);
(2)當x<-3時,求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,且 的最小值為t.
(1)求實數(shù)t的值;
(2)解關(guān)于x的不等式:|2x+1|+|2x﹣1|<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點
是棱的中點,平面與棱交于點.
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線與的直角坐標方程;
(2)當與有兩個公共點時,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com