7.在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,PA=1,PB=PC=2,若三棱錐P-ABC的頂點都在球O的球面上,則球O的表面積等于( 。
A.B.16πC.25πD.36π

分析 以PA、PB、PC為過同一頂點的三條棱,作長方體如圖,則長方體的外接球同時也是三棱錐P-ABC外接球.算出長方體的對角線即為球直徑,結(jié)合球的表面積公式,可算出三棱錐P-ABC外接球的表面積

解答 解:由題意,以PA、PB、PC為過同一頂點的三條棱,作長方體如圖,則長方體的外接球同時也是三棱錐P-ABC外接球.
∵長方體的對角線長為$\sqrt{1+4+4}$=3,
∴球直徑為3,半徑R=$\frac{3}{2}$,
因此,三棱錐P-ABC外接球的表面積是4πR2=4π×($\frac{3}{2}$)2=9π
故選:A.

點評 本題給出三棱錐的三條側(cè)棱兩兩垂直,求它的外接球的表面積,著重考查了長方體對角線公式和球的表面積計算等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,若sinA:sinB:sinC=3:5:7,且最大邊長為14,則△ABC的面積是15$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)y=f(x)在實數(shù)集R上的圖象是連續(xù)不斷的,且對任意實數(shù)x存在常數(shù)t使得f(t+x)=tf(x)恒成立,則稱y=f(x)是一個“關(guān)于t函數(shù)”.現(xiàn)有下列“關(guān)于t函數(shù)”的結(jié)論:
①常數(shù)函數(shù)是“關(guān)于t函數(shù)”;
②“關(guān)于2函數(shù)”至少有一個零點;
③f(x)=($\frac{1}{2}$)x是一個“關(guān)于t函數(shù)”.
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=Z,P={-2,-1,1,2},Q={x|x2-3x+2=0},則圖中陰影部分表示的集合為( 。
A.{-1,-2}B.{1,2}C.{-2,1}D.{-1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z滿足$\frac{1-2i}{z}$=i,則復(fù)數(shù)z的虛部是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a是常數(shù),f(x)=x2+2|x-1|+3,對任意實數(shù)x,不等式f(x)≥a都成立
(Ⅰ)求a的取值范圍
(Ⅱ)對任意實數(shù)x,求證:|x+3|≥a-|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若Sn是公差不為0的等差數(shù){an}的前n項和,且S1,S2,S4成等比例數(shù)列.
(Ⅰ)求等數(shù)列S1,S2,S4的公比;
(Ⅱ)若S2=4,設(shè)bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項和,求使得Tn$<\frac{m}{20}$對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)不等式組$\left\{\begin{array}{l}x+y-4≤0\\ x≥0\\ y≥0\end{array}\right.$表示平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一點P,則點P落在圓x2+y2=1內(nèi)的概率為$\frac{π}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若等式$\sqrt{\frac{1-sinx}{1+sinx}}$=tanx-secx恒成立,則x的取值范圍是{x|2kπ+$\frac{π}{2}$<x<2kπ+$\frac{3π}{2}$,k∈z}..

查看答案和解析>>

同步練習(xí)冊答案