對于函數(shù)f(x),若對于任意的a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”,已知函數(shù)f(x)=
ex+t
ex+1
是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是
 
考點(diǎn):函數(shù)與方程的綜合運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:因?qū)θ我鈱?shí)數(shù)a、b、c,都存在以f(a)、f(b)、f(c)為三邊長的三角形,則f(a)+f(b)>f(c)恒成立,將f(x)解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,整個(gè)式子的取值范圍由t-1的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域,然后討論k轉(zhuǎn)化為f(a)+f(b)的最小值與f(c)的最大值的不等式,進(jìn)而求出實(shí)數(shù)k 的取值范圍.
解答: 解:由題意可得f(a)+f(b)>f(c)對于?a,b,c∈R都恒成立,
由于f(x)=
ex+t
ex+1
=1+
t-1
ex+1
,
①當(dāng)t-1=0,f(x)=1,此時(shí),f(a),f(b),f(c)都為1,構(gòu)成一個(gè)等邊三角形的三邊長,
滿足條件.
②當(dāng)t-1>0,f(x)在R上是減函數(shù),1<f(a)<1+t-1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得 2≥t,解得1<t≤2.
③當(dāng)t-1<0,f(x)在R上是增函數(shù),t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得 2t≥1,解得1>t≥
1
2

綜上可得,
1
2
≤t≤2,
故實(shí)數(shù)t的取值范圍是[
1
2
,2],
故答案為:[
1
2
,2]
點(diǎn)評:本題主要考查了求參數(shù)的取值范圍,以及構(gòu)成三角形的條件和利用函數(shù)的單調(diào)性求函數(shù)的值域,同時(shí)考查了分類討論的思想,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax3-9x2+6(a-2)x+2,a∈R.
(1)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(2)若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員400人,每人每年可創(chuàng)利10萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.05萬元,但公司需付下崗職員每人每年2萬元的生活費(fèi),并且該公司正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的
3
4
,為獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x3-
3
2
x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(X)=
x2+a
ex
(x∈R)(e是自然對數(shù)的底數(shù)).
(1)當(dāng)a=-15時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[
1
e
,e]上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)證明
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e
對一切n∈N*恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點(diǎn)(3,4),且(-2,1)是它的一個(gè)方向向量,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與-
33
4
π終邊相同的最小正角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是遞減的等差數(shù)列,且a3+a9=10,a5•a7=16,則數(shù)列{an}的前n項(xiàng)和Sn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-2(a>0,且a≠1)的圖象必經(jīng)過點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊答案