【題目】已知數(shù)列的前項和為,滿足,且,正項數(shù)列滿足,其前7項和為42.
(1)求數(shù)列和的通項公式;
(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;
(3)將數(shù)列的項按照“當為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面”的要求進行排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和.
【答案】(1);(2);(3),
【解析】
試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得的通項公式,求得,利用求得,再求得可得數(shù)列通項,利用已知可得,又得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從而易求得和,于是有,只要求得的最大值即可得的最小值,從而得的范圍,研究的單調(diào)性可得;(3)根據(jù)新數(shù)列的構(gòu)造方法,在求新數(shù)列的前項和時,對分類:,和()三類,可求解.
試題解析:(1)∵,∴數(shù)列是首項為1,公差為的等差數(shù)列,
∴,即,
∴,
又,∴.............................3分
∵,∴,又,∴,∴數(shù)列是等差數(shù)列,且公差為,設的前項和為,
∵,∴,∴...................5分
(2)由(1)知,
∴
,
∴.......................7分
設,則,
∴數(shù)列為遞增數(shù)列,.........................9分
∴,
∵對任意正整數(shù),都有恒成立,∴..........................10分
(3)數(shù)列的前項和,數(shù)列的前項和,
①當時,;
②當時,,
特別地,當時,也符合上式;
③當時,.
綜上:,...................................16分
科目:高中數(shù)學 來源: 題型:
【題目】
某園藝公司種植了一批名貴樹苗,為了解樹苗的生長情況,從這批樹苗中隨機地測量了棵樹苗的高度(單位:厘米),并把這些高度列成如下的頻數(shù)分布表:
組別 | ||||||
頻數(shù) | 2 | 4 | 11 | 16 | 13 | 4 |
(Ⅰ)在這批樹苗中任取一棵,其高度在厘米以上的概率大約是多少?這批樹苗的平均高度大約是多少?
(Ⅱ)為了進一步獲得研究資料,標記組中的樹苗為,組中的樹苗為,現(xiàn)從組中移出一棵樹苗,從組中移出兩棵樹苗進行試驗研究,則組的樹苗和組的樹苗同時被移出的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點P的坐標;
(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:(x﹣1)2+(y﹣1)2=4,直線l過點P(2,3)且與圓M交于A,B兩點,且|AB|=2 .
(1)求直線l方程;
(2)設Q(x0 , y0)為圓M上的點,求x02+y02的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線的參數(shù)方程是(為參數(shù)),曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)設直線與曲線相交于,兩點,點為的中點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】底面是正方形的四棱錐中中,側(cè)面底面,且是等腰直角三角形,其中,分別為線段的中點,問在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(Ⅰ)求曲線在處的切線方程;
(Ⅱ)關于的不等式在恒成立,求實數(shù)的取值范圍;
(Ⅲ)關于的方程有兩個實根, ,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com