10.已知函數(shù)f(x)=log2|x|-1.若a=f(-4),b=f(2sinθ),c=2f(sinθ),θ≠$\frac{kπ}{2}$,k∈Z,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

分析 根據(jù)已知函數(shù)f(x)=log2|x|-1.結(jié)合正弦函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),分析a,b,c的范圍,可得答案.

解答 解:∵函數(shù)f(x)=log2|x|-1.
∴a=f(-4)=log2|-4|-1=log24-1=1,
b=f(2sinθ)=log2|2sinθ|-1=log2(2sinθ)-1=sinθ-1∈(-2,0),
c=2f(sinθ)=${2}^{{log}_{2}\left|sinθ\right|-1}$=$\frac{\left|sinθ\right|}{2}$∈(0,$\frac{1}{2}$),
故a>c>b,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知∠A=45°,a=6.
(1)若∠C=105°,求b;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,則AC1的長為( 。
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.多面體MN-ABCD的底面ABCD為矩形,其正(主)視圖和側(cè)(左)視圖如圖,其中正(主)視圖為等腰梯形,側(cè)(左)視圖為等腰三角形,則AM的長為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的幾何體中,△ABC為正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F(xiàn)在線段BE上.
(1)求證:平面DBE⊥平面ABE;
(2)若二面角B-DA-F的余弦值為$\frac{\sqrt{10}}{4}$,求BF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求平面MBQ與平面CBQ夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四面體P-ABCD中,△ABD是邊長為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=$\frac{2\sqrt{3}}{3}$.
(1)求證:PA⊥BD;
(2)已知E是PA上一點(diǎn),且BE∥平面PCD.若PC=2,求點(diǎn)E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.2,則P(0≤ξ≤1)=(  )
A.0.2B.0.3C.0.4D.0.6

查看答案和解析>>

同步練習(xí)冊答案