【題目】設(shè)函數(shù)
(Ⅰ)若 ,求f(x)的極值;
(Ⅱ)若f(x)在定義域上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

【答案】解:(Ⅰ)定義域?yàn)閤∈(0,+∞). 當(dāng) 時(shí), 且f'(1)=0.
令h(x)=﹣x+1﹣lnx,則
故h(x)在定義域上是減函數(shù),
注意到h(1)=0,
∴當(dāng)x∈(0,1)時(shí),h(x)>h(1)=0,此時(shí)f'(x)>0;
當(dāng)x∈(1,+∞)時(shí),h(x)<h(1)=0,此時(shí)f'(x)<0.
∴f(x)的極大值為f(1)=0,無(wú)極小值.
(Ⅱ)當(dāng)x∈(0,+∞)時(shí),f′(x)= ≥0,
故2a≥ ,

,
由g'(x)>0得x∈(0,e2),
由g'(x)<0得x∈(e2 , +∞),
故g(x)的最大值為
∴2a≥ ,a≥ e2
【解析】(Ⅰ)求出函數(shù)到底是,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(Ⅱ)問(wèn)題轉(zhuǎn)化為2a≥ ,令 ,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列三個(gè)命題: ①若一個(gè)球的半徑縮小到原來(lái)的 ,則其體積縮小到原來(lái)的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:
①函數(shù) 的一條對(duì)稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
以上五個(gè)命題中正確的有(填寫所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A=60°,c= a.
(1)求sinC的值;
(2)若a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解含參數(shù)a的一元二次不等式:(a﹣2)x2+(2a﹣1)x+6>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次不等式f(x)<0的解集為{x|x<﹣1或 ,則f(ex)>0的解集為(
A.{x|x<﹣1或x>﹣ln3}
B.{x|﹣1<x<﹣ln3}
C.{x|x>﹣ln3}
D.{x|x<﹣ln3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)計(jì)算f(3),f(4),f( )及f( )的值;
(2)由(1)的結(jié)果猜想一個(gè)普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知樣本數(shù)據(jù)a1 , a2 , a3 , a4 , a5的方差s2= (a12+a22+a32+a42+a52﹣80),則樣本數(shù)據(jù)2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A(n)表示正整數(shù)n的個(gè)位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項(xiàng)和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項(xiàng)和為

查看答案和解析>>

同步練習(xí)冊(cè)答案