A. | -7 | B. | -14 | C. | 7 | D. | 14 |
分析 取MN的中點(diǎn)A,連接OA,則OA⊥MN.由點(diǎn)到直線(xiàn)的距離公式算出OA=1,從而在Rt△AON中,得到cos∠AON,利用倍角公式求出cos∠MON的值,最后根據(jù)向量數(shù)量積的公式即可算出$\overrightarrow{OM}•\overrightarrow{ON}$的值.
解答 解:取MN的中點(diǎn)A,連接OA,則OA⊥MN,
∵c2=a2+b2,
∴O點(diǎn)到直線(xiàn)MN的距離OA=$\frac{|c|}{\sqrt{{a}^{2}+^{2}}}$=1
x2+y2=16的半徑r=4,
∴Rt△AON中,設(shè)∠AON=θ,得cosθ=$\frac{OA}{ON}$=$\frac{1}{4}$,
cos∠MON=cos2θ=2cos2θ-1=2×$\frac{1}{16}$-1=-$\frac{7}{8}$,
由此可得,$\overrightarrow{OM}•\overrightarrow{ON}$=|$\overrightarrow{OM}$|•|$\overrightarrow{ON}$|cos∠MON=4×4×(-$\frac{7}{8}$)=-14
故選:B.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的計(jì)算,根據(jù)直線(xiàn)和圓的關(guān)系求出向量夾角是解決本題的關(guān)鍵.,著重考查了直線(xiàn)與圓的位置關(guān)系和向量數(shù)量積的運(yùn)算公式等知識(shí)點(diǎn),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 18 | C. | 27 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 150° | B. | 120° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com