分析 當(dāng)直線l2的斜率不存在時(shí),利用垂徑定理算出弦AB的長(zhǎng)為8,此時(shí)l2方程為x=5符合題意;當(dāng)直線l2的斜率存在時(shí)設(shè)l2的方程為y=k(x-5),利用點(diǎn)到直線的距離公式和垂徑定理加以計(jì)算,可得k=-$\frac{7}{24}$,得到l2方程為7x+24y-35=0.最后加以綜合即可得到滿足條件的直線l2的方程.
解答 解:①當(dāng)直線l2的斜率不存在時(shí),其方程為x=5,
∵圓心C到x=5距離等于3,
∴弦AB的長(zhǎng)為2$\sqrt{25-9}$=8,滿足題意;
②當(dāng)直線l2的斜率存在時(shí),設(shè)l2方程為y=k(x-5),
∵弦AB長(zhǎng)是8,∴圓心C到直線l2的距離d=$\sqrt{{r}^{2}-(\frac{1}{2}|AB|)^{2}}$=3,
∵l2方程為y=k(x-5),即kx-y-5k=0,
∴$\frac{|-3k-4|}{\sqrt{{k}^{2}+1}}$=3,解之得k=-$\frac{7}{24}$,可得直線l2方程是7x+24y-35=0
綜上所述,可得直線l2方程為x-5=0或7x+24y-35=0,
故答案為x-5=0或7x+24y-35=0.
點(diǎn)評(píng) 本題給出已知圓和點(diǎn)P,求被圓截得弦長(zhǎng)為8的直線方程.著重考查了圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,x2-x-1≤0 | B. | ?x∈R,x2-x-1>0 | ||
C. | ?x0∈R,${x_0}^2-{x_0}-1≤0$ | D. | ?x0∈R,${x_0}^2-{x_0}-1≥0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{48+25\sqrt{3}}}{39}$ | B. | $\frac{{48-25\sqrt{3}}}{39}$ | C. | $-\frac{{48+25\sqrt{3}}}{39}$ | D. | $-\frac{{48-25\sqrt{3}}}{39}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.1 | B. | 0.2 | C. | 0.3 | D. | 0.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\frac{23}{16}$ | D. | $-\frac{23}{11}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com