3.一個(gè)圓錐筒的底面半徑為3cm,其母線長(zhǎng)為5cm,則這個(gè)圓錐筒的體積為12πcm3

分析 求出圓錐的高,代入圓錐的體積公式即可求出.

解答 解:圓錐的高h(yuǎn)=$\sqrt{{5}^{2}-{3}^{2}}$=4,∴圓錐的體積V=$\frac{1}{3}$×π×32×4=12π.
故答案為:12π.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征,體積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線方程為y=x3,求:
(1)曲線在點(diǎn)A(2,8)處的切線方程;
(2)曲線過點(diǎn)A(2,8)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是(4).
(1)PB⊥AD;(2)平面PAB⊥平面PBC;(3)直線BC∥平面PAE;(4)∠PDA=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18. 如圖,一橋拱的形狀為拋物線,此時(shí)水面距橋拱頂端h=6m,水面寬b=24m,若水面上升2m后,水面寬為8$\sqrt{6}$米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求曲線C和直線l在該直角坐標(biāo)系下的普通方程;
(Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P的坐標(biāo)為(-2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=b•ax(其中a、b為常數(shù),a>0,a≠1)的圖象過點(diǎn),A(1,$\frac{1}{6}$),B(3,$\frac{1}{24}$).
(1)求f(x)
(2)若不等式($\frac{1}{a}$)x+($\frac{1}$)x-m≥0在x∈[1,+∞)時(shí)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中.己知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{2π}{3}}\\{y=4+tsin\frac{2π}{3}}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)直線l與曲線C相交于A、B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某種型號(hào)的電腦自投放市場(chǎng)以來,經(jīng)過三次降價(jià),單價(jià)由原來的5000元降到2560元,則平均每次降價(jià)的百分率是( 。
A.10%B.15%C.16%D.20%

查看答案和解析>>

同步練習(xí)冊(cè)答案