14.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是(4).
(1)PB⊥AD;(2)平面PAB⊥平面PBC;(3)直線BC∥平面PAE;(4)∠PDA=45°.

分析 利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.

解答 解:∵AD與PB在平面的射影AB不垂直,
∴PB⊥AD不成立,(1)不正確;
又平面PAB⊥平面PAE,
∴平面PAB⊥平面PBC也不成立,(2)不正確;
由正六邊形的性質(zhì)得BC∥AD,又AD?平面PAD,∴BC∥平面PAD,∴直線BC∥平面PAE也不成立,(3)不正確;
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴(4)正確.
故答案為:(4).

點評 本小題考查空間中的線面關(guān)系,正六邊形的性質(zhì)等基礎(chǔ)知識,考查空間想象能力和思維能力,以及空間想象能力、推理論證能力和運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.閱讀如圖所示的程序框圖,若輸出d=0.1,a=0,b=0.5,則輸出的結(jié)果是( 。
參考數(shù)據(jù):
 x f(x)=2x-3x
 0.25 0.44
 0.375 0.17
 0.4375 0.04
 0.46875-0.02
 0.5-0.08
A.0.375B.0.4375C.0.46875D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,已知A=45°,B=30°,c=10,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)y=f(x),不等式f(x)≤0的解集為N={x|-1≤x≤3},且關(guān)于x的方程f(x)+4=0有兩個相等的實數(shù)根.
(Ⅰ)若M={x|1-a<x<a+1,a∈R},且M⊆N,求實數(shù)a的取值范圍;
(Ⅱ)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,B=$\frac{π}{4}$,b=4,則ac的取值范圍為(0,$8(2+\sqrt{2})$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,在正方體ABC-A1B1C1D1中,異面直線A1D與AB1所成角( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對于任意兩個非零向量$\overrightarrow{α}$和$\overrightarrow{β}$,定義$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,若兩個非零的平面向量$\overrightarrow{α}$,$\overrightarrow{β}$滿足|$\overrightarrow{α}$|≥|$\overrightarrow{β}$|,其夾角θ∈(0,$\frac{π}{4}$),且$\overrightarrow{α}$?$\overrightarrow{β}$和$\overrightarrow{β}$?$\overrightarrow{α}$都在集合$\left\{{\frac{n}{2}|n∈Z}\right\}$中,則$\overrightarrow{α}$?$\overrightarrow{β}$=( 。
A.$\frac{5}{2}$B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一個圓錐筒的底面半徑為3cm,其母線長為5cm,則這個圓錐筒的體積為12πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0)
(Ⅰ)求cosα,tanβ;
(Ⅱ)求tan(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案