如圖,在中,,,上的高,沿折起,使.
(Ⅰ)證明:平面⊥平面
(Ⅱ)若,求三棱錐的表面積.
(Ⅰ)證明詳見解析;(Ⅱ) .

試題分析:(Ⅰ)先證線面垂直平面,再證明面面垂直平面平面;(Ⅱ)由第一問可知都是直角三角形,可以求出,所以是等邊三角形,分別求出四個三角形的面積.
試題解析:(Ⅰ)因為折起前邊上的高.
所以當折起后,,          3分
,所以平面,因為平面
所以平面平面.                     6分
(Ⅱ)由(1)知,,,
因為,
所以,                    9分
從而,

所以三棱錐的表面積.          12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,,的中點.

(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,,,是線段的中點.
(Ⅰ)求證:平面
(Ⅱ)求平面把長方體 分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O點.
(I)求證:平面PBD丄平面PAC.
(II)當點A在平面PBD內(nèi)的射影G恰好是ΔPBD的重心時,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖, 在三棱錐中,

(1)求證:平面平面
(2)若,,當三棱錐的體積最大時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,多面體中,四邊形是邊長為的正方形,平面垂直于平面,且,.
(Ⅰ)求證:
(Ⅱ)若分別為棱的中點,求證:∥平面;
(Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在三棱錐中,平面,分別是的中點,,交于,交于點,連接。

(Ⅰ)求證:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,是平面圖形的直觀圖,則的面積是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面,平面,△為等邊三角形,,的中點.

(1)求證:平面;
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案