【題目】已知函數(shù), .
(Ⅰ)求證:當(dāng)時(shí), ;
(Ⅱ)若函數(shù)在(1,+∞)上有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)(0,1)
【解析】試題分析:(Ⅰ)求導(dǎo),得,分析單調(diào)性得當(dāng)時(shí), 即得證;(Ⅱ) 對(duì)t進(jìn)行討論①, 在[1,+∞)上是增函數(shù),所以當(dāng)時(shí), ,所以在(1,+∞)上沒(méi)有零點(diǎn),②若, 在[1,+∞)上是減函數(shù),所以當(dāng)時(shí), ,所以在(1,+∞)上沒(méi)有零點(diǎn),③若0<t<1時(shí)分析單調(diào)性借助于第一問(wèn),找到,則當(dāng)時(shí),即成立;取,則當(dāng)時(shí), ,即,說(shuō)明存在,使得,即存在唯一零點(diǎn);
試題解析:(Ⅰ)由,得.
當(dāng)變化時(shí), 與的變化情況如下表:
x | (0,4) | 4 | (4,+∞) |
+ | 0 | - | |
所以當(dāng)時(shí), ;
(Ⅱ)
①若,則當(dāng)時(shí), ,所以在[1,+∞)上是增函數(shù),
所以當(dāng)時(shí), ,所以在(1,+∞)上沒(méi)有零點(diǎn),所以不滿足條件.
②若,則當(dāng)時(shí), ,所以在[1,+∞)上是減函數(shù),
所以當(dāng)時(shí), ,所以在(1,+∞)上沒(méi)有零點(diǎn),所以不滿足條件.
③若0<t<1,則由,得
當(dāng)變化時(shí), 與的變化情況如下表:
記,則當(dāng)時(shí),即成立;
由(Ⅰ)知當(dāng)時(shí), ,即成立,所以取,則當(dāng)時(shí), 且,從而 ,即,這說(shuō)明存在,使得,
結(jié)合上表可知此時(shí)函數(shù)在(1,+∞)上有唯一零點(diǎn),所以0<t<1滿足條件.
綜上,實(shí)數(shù)的取值范圍為(0,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有一個(gè)正方形網(wǎng)格,其中每個(gè)最小正方形的邊長(zhǎng)都為5 cm.現(xiàn)用直徑為2 cm的硬幣投擲到此網(wǎng)格上,求硬幣落下后與格線有公共點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圍建一個(gè)面積為360的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(Ⅰ)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;
(Ⅱ)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(Ⅲ)根據(jù)表1和圖1,對(duì)兩套設(shè)備的優(yōu)劣進(jìn)行比較.
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, 平面, 為線段上一點(diǎn), , 為的中點(diǎn).
(1)證明:
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國(guó)南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜?lái)的,祖暅原理的內(nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長(zhǎng)為),四棱錐的底面是有一個(gè)角為的菱形(邊長(zhǎng)為),圓錐的體積為,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P-ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直線BC與平面ABF所成角的大小,并求線段PH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對(duì)于不相等的實(shí)數(shù)x1,x2,設(shè)m=,n=,現(xiàn)有如下命題:
①對(duì)于任意不相等的實(shí)數(shù)x1,x2,都有m>0;
②對(duì)于任意的a及任意不相等的實(shí)數(shù)x1,x2,都有n>0;
③對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=n;
④對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=-n.
其中真命題有___________________(寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍.
(2)設(shè),證明: 在上的最小值為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com