1.函數(shù)g(x)=-x2+2x+3在[0,4]上的值域?yàn)椋ā 。?table class="qanwser">A.[-5,3]B.[3,4]C.(-∞,4]D.[-5,4]

分析 配方,根據(jù)一元二次函數(shù)的單調(diào)區(qū)間求函數(shù)的最大、最小值即可.

解答 解:f(x)=-(x-1)2+4,對稱軸x=1,開口向下,
函數(shù)在[0,1]上遞增;在[1,4]上遞減,
∵f(0)>f(4),
∴最大值是f(1)=4,最小值是f(4)=-5,
∴函數(shù)的值域是[-5,4].
故答案為:[-5,4].

點(diǎn)評 本題考查函數(shù)的值域,考查函數(shù)的單調(diào)性,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.討論函數(shù)y=ax(0<a<1),y=xn(n<0),y=logax(0<a<1)在區(qū)間(0,+∞)上的增減情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.關(guān)于x的方程lg(tx)=2lg(x+2)有且僅有一個實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展開式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992.
(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求${S_n}=C_n^1+C_n^2•2+C_n^3•{2^2}+…+C_n^n•{2^{n-1}}$值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(Ⅰ)定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=-x2+2x.另一個函數(shù)y=g(x)的定義域?yàn)閇a,b],值域?yàn)閇$\frac{1},\frac{1}{a}$],其中a≠b,a,b≠0.在x∈[a,b]上,g(x)=f(x).求a,b.
(Ⅱ)b,c∈R,二次函數(shù)f(x)=x2+bx+c在(0,1)上與x軸有兩個不同的交點(diǎn),求c2+(1+b)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用數(shù)學(xué)歸納法證明不等式1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$<2-$\frac{1}{n}$(n≥2,n∈N+)時,第一步應(yīng)驗(yàn)證不等式( 。
A.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{2}$B.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{3}$
C.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{3}$D.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow$,$\overrightarrow{CD}=\overrightarrow{c}$,則向量$\overrightarrow{BD}$可以表示為(  )
A.$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$B.$\overrightarrow$+$\overrightarrow{a}$-$\overrightarrow{c}$C.$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$D.$\overrightarrow$-$\overrightarrow{a}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A.y=x3B.y=|x+1|C.y=-x2+1D.y=2|x|+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$,則Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n}{n}$)(n∈N*)=$\frac{n}{2}$-$\sqrt{2}$+$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案