精英家教網 > 高中數學 > 題目詳情
19.如圖所示,一個幾何體的正視圖和側視圖都是邊長為2的正方形,俯視圖是一個直徑為2的圓,則這個幾何體的全面積是( 。
A.B.C.D.

分析 由已知可得該幾何體為圓柱,將半徑和高代入圓柱表面積公式,可得答案.

解答 解:由已知可得該幾何體為圓柱,
底面直徑為2,半徑r=1,高h=2,
故全面積S=2πr(r+h)=6π,
故選:C.

點評 本題考查的知識點是由三視圖求體積和表面,根據三視圖分析出幾何體的形狀,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點(0,1),離心率為$\frac{{\sqrt{3}}}{2}$,
(1)求橢圓的標準方程;
(2)過點(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點,將|AB|表示為m的函數,并求|AB|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.給出定義在(0,+∞)上的兩個函數f(x)=x2-alnx,g(x)=x-a$\sqrt{x}$.
(1)若f(x)在x=1處取最值.求實數a的值;
(2)若函數h(x)=f(x)+g(x2)在區(qū)間(0,1]上單調遞減,求實數a的取值范圍;
(3)在(1)的條件下,試確定函數m(x)=f(x)-g(x)-6的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知函數f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數,當x>0時,f(x)=$\left\{{\begin{array}{l}{{2^{|{x-1}|}}-1,0<x≤2}\\{\frac{1}{2}f(x-2),x>2}\end{array}}$則函數g(x)=2f(x)-1的零點個數為(  )個.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.等差數列{an}中,若a5=6,a3=2,則公差為( 。
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.集合A={x|0≤x<3且x∈N}的子集的個數為( 。
A.16B.8C.7D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知函數f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≥1}\\{x-1,x<1}\end{array}}$,對其敘述正確的有幾個?( 。
①定義域是R,
②定義域是∅,
③定義域是區(qū)間[1,+∞),
④在定義域上是增函數,
⑤在區(qū)間[1,+∞)上是增函數,
⑥是奇函數,
⑦f(a2+1)=a2,
⑧f(x)的最小值為2.
A.0B.3C.4D.7

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知α,β均為銳角,且sinα=$\frac{3}{5}$,cos(β+$\frac{π}{6}$)=-$\frac{3\sqrt{3}}{14}$.則sin2α$\frac{24}{25}$,cosβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知直線l與函數f(x)=ln($\sqrt{e}$x)-ln(1-x)的圖象交于P,Q兩點,若點R($\frac{1}{2}$,m)是線段PQ的中點,則實數m的值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案