【題目】四棱錐中,底面是矩形,平面,,以為直徑的球面交于點,交于點.則點到平面的距離為_.
【答案】
【解析】
依題設知,AC是所作球面的直徑,則AM⊥MC.由P A⊥平面ABCD,得PA⊥CD,結合CD⊥AD,可得CD⊥平面PAD,則CD⊥AM,再由線面垂直的判定可得A M⊥平面PCD;根據(jù)體積相等求出D到平面ACP的距離,即可求得到M與平面APC的距離,再利用等體積求解點到平面的距離即可
因為平面,所以,
又,,所以平面.
又因為平面,所以.
同理可得平面,又因為平面,所以.
由題意可知,又因為平面,
所以平面,又因為平面,所以平面平面.
連接,
又,所以是的中點,,
所以,
同理可得,
由題意可知,,則,所以
所以
設點到平面的距離為,點到平面的距離為,點到平面的距離為,
由,得
因為是的中點,所以
由,
得
所以點到平面的距離為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,AC⊥BC,且,AC=BC=2,D,E分別為AB,PB中點,PD⊥平面ABC,PD=3.
(1)求直線CE與直線PA夾角的余弦值;
(2)求直線PC與平面DEC夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,,AB=AD=2CD=2,△ADP為等邊三角形.
(1)當PB長為多少時,平面平面ABCD?并說明理由;
(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,側面PAD垂直底面ABCD,∠PAD=∠ABC,設.
(1)求證:AE垂直BC;
(2)若直線AB∥平面PCD,且DC=2AB,求證:直線PD∥平面ACE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,平面四邊形ABCD中,,,且BC=CD.將CBD沿BD折成如圖2所示的三棱錐,使二面角的大小為.
(1)證明:;
(2)求直線BC'與平面C'AD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設點在線段上運動,平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐M-ABC中,MA=MB=MC=AC=,AB=BC=2,O為AC的中點,點N在邊BC上,且.
(1)證明:BO平面AMC;
(2)求二面角N-AM-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權威的檢測機構在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款、荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經(jīng)遠銷至中國,地區(qū)聞訊后,立即組織相關檢測員對這8款品牌的奶粉進行抽檢,已知該地區(qū)一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機抽取3袋恰有2袋含有芳香經(jīng)礦物油成分的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com