【題目】已知,函數(shù).
(1)若有極小值且極小值為0,求的值;
(2)當(dāng)時(shí),,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)討論a的范圍,判斷f(x)的單調(diào)性,得出f(x)的極小值,從而列方程解出a的值;
(2)等價(jià)于,即,討論a的范圍,轉(zhuǎn)化為新函數(shù)的最值問題即可.
(1)
①若,則由解得,
當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增;
故當(dāng)時(shí),取極小值,令,得(舍去)
若,則由,解得
(i)若,即時(shí),當(dāng),,遞增;
當(dāng),,遞增;故當(dāng)當(dāng)時(shí),取極小值,
令,得(舍去)
(ii)若,即時(shí),,遞增不存在極值;
(iii)若,即時(shí),當(dāng)時(shí),,遞增;當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增;
故當(dāng)時(shí),取極小值,得滿足條件
故當(dāng)有極小值且極小值為0時(shí),.
(2)等價(jià)于,即(*)
當(dāng)時(shí),①式恒成立;當(dāng)時(shí),,故當(dāng)時(shí),①式恒成立;
以下求當(dāng)時(shí),不等式恒成立,且當(dāng)時(shí)不等式恒成立時(shí)正數(shù)的取值范圍
令,以下求當(dāng),恒成立,且當(dāng),恒成立時(shí)正數(shù)的取值范圍
對求導(dǎo),得,記
(i)當(dāng)時(shí),,,
故在上遞增,又,故,,
即當(dāng)時(shí),(*)式恒成立;
(ii)當(dāng)時(shí),,故的兩個(gè)零點(diǎn)即的兩個(gè)零點(diǎn)和,在區(qū)間上,,是減函數(shù),
又,所以,當(dāng)時(shí)①式不能恒成立.
綜上所述,所求的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
如圖,四邊形ABCD為梯形,AB//CD,平面ABCD,
為BC的中點(diǎn).
(1)求證:平面平面PDE.
(2)在線段PC上是否存在一點(diǎn)F,使得PA//平面BDF?若存在,指出點(diǎn)F的位置,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若對所有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場,根據(jù)市場調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 2 | 6 | 20 |
市場價(jià)y元 | 102 | 78 | 120 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)y與上市時(shí)間x的變化關(guān)系并說明理由:①;②;③;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)利用你選取的函數(shù),若存在,使得不等式成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平的廣場上有一盞路燈掛在高的電線桿頂上,記電線桿的底部為點(diǎn).把路燈看作一個(gè)點(diǎn)光源,身高的女孩站在離點(diǎn)的點(diǎn)處,回答下面的問題.
(1)若女孩以為半徑繞著電線桿走一個(gè)圓圈,人影掃過的是什么圖形,求這個(gè)圖形的面積;
(2)若女孩向點(diǎn)前行到達(dá)點(diǎn),然后從點(diǎn)出發(fā)沿著以為對角線的正方形走一圈,畫出女孩走一圈時(shí)頭頂影子的軌跡,說明軌跡的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(個(gè)月)和市場占有率()的幾組相關(guān)對應(yīng)數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場占有率的變化趨勢,并預(yù)測自上市起經(jīng)過多少個(gè)月,該款旗艦機(jī)型市場占有率能超過(精確到月).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相。某超市計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購荔枝,每天進(jìn)貨量相同且每公斤20元,當(dāng)日18時(shí)前售價(jià)為每公斤24元,18時(shí)后以每公斤16元的價(jià)格銷售完畢。根據(jù)往年情況,每天的荔枝需求量與當(dāng)天平均氣溫有關(guān),如下表表示:
平均氣溫t(攝氏度) | ||||
需求量n(公斤) | 50 | 100 | 200 | 300 |
為了確定今年6月1日6月30日的日購數(shù)量,統(tǒng)計(jì)了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(1)假設(shè)該超市在以往三年內(nèi)的六月每天進(jìn)貨100公斤,求荔枝為超市帶來的日平均利潤(結(jié)果取整數(shù)).
(2)若今年該超市進(jìn)貨量為200公斤,以記錄的各需求量的頻率作為相應(yīng)的概率,求當(dāng)天超市不虧損的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com