分析 (1)利用向量共線定理可得:$\sqrt{3}$sinA-cosA=1,再利用和差公式、三角函數(shù)求值即可得出.
(2)由題知$\frac{1+sin2B}{cos{\;}^{2}B-sin{\;}^{2}B}$=-3,利用倍角公式化為$\frac{cosB+sinB}{cosB-sinB}$=-3,因此$\frac{1+tanB}{1-tanB}$=-3,解得tanB.再利用tanC=tan[π-(A+B)]=-tan(A+B),展開(kāi)代入即可得出.
解答 解:(1)∵$\overrightarrow{m}∥\overrightarrow{n}$,∴$\sqrt{3}$sinA-cosA=1,
2(sinA•$\frac{\sqrt{3}}{2}$-cosA•$\frac{1}{2}$)=1,sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,-$\frac{π}{6}$<A-$\frac{π}{6}$<$\frac{5π}{6}$,
∴A-$\frac{π}{6}$=$\frac{π}{6}$.∴A=$\frac{π}{3}$.
(2)由題知$\frac{1+sin2B}{cos{\;}^{2}B-sin{\;}^{2}B}$=-3,
∴$\frac{(cosB+sinB)^{2}}{(cosB+sinB)(cosB-sinB)}$=-3,
∴$\frac{cosB+sinB}{cosB-sinB}$=-3,
∴$\frac{1+tanB}{1-tanB}$=-3,∴tanB=2.
∴tanC=tan[π-(A+B)]=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{8+5\sqrt{3}}{11}$.
點(diǎn)評(píng) 本題考查了向量共線定理、和差公式、三角函數(shù)求值、倍角公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系 | |
B. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
C. | 線性回歸方程對(duì)應(yīng)的直線$\widehat{y}$=$\widehat$x+$\widehat{a}$至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn) | |
D. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com