【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的右頂點為(2,0),離心率為,P是直線x=4上任一點,過點M(1,0)且與PM垂直的直線交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)若P點的坐標為(4,3),求弦AB的長度;
(3)設(shè)直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
【答案】(1);(2);(3)存在,λ=2,計算見解析
【解析】
(1)根據(jù)題意可知,再由離心率公式可得,然后根據(jù)得出,即可得橢圓的方程;
(2)根據(jù) 點的坐標寫出直線方程,與橢圓聯(lián)立解得坐標,利用兩點間距離公式即可求得弦的長度;
(3)先假設(shè)存在,后分直線斜率存在和不存在兩種情況進行求解,直線斜率不存在時容易的,直線斜率存在時,設(shè)點坐標,與橢圓聯(lián)立,再分別求出,進行化簡整理即可得到的值.
(1)由題知,,
,,
∴橢圓方程為.
(2),
,
∵直線與直線垂直,
∴,
∴直線方程,即,
聯(lián)立,得
或,
,,
.
(3)假設(shè)存在常數(shù),使得.
當直線的斜率不存在時,其方程為,代入橢圓方程得,,此時,易得,
當直線的斜率存在時,設(shè)直線的方程為,,
代入橢圓方程得(1+4k2)x2﹣8k2x+4k2﹣4=0,
,,
直線方程為,則
,
,
,
,
,
即,
化簡得:,
將,,,,代入并化簡得:
.
綜上:.
科目:高中數(shù)學 來源: 題型:
【題目】某老師是省級課題組的成員,主要研究課堂教學目標達成度,為方便研究,從實驗班中隨機抽取30次的隨堂測試成績進行數(shù)據(jù)分析已知學生甲的30次隨堂測試成績?nèi)缦?/span>滿分為100分:
把學生甲的成績按,,,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖;
規(guī)定隨堂測試成績80分以上含80分為優(yōu)秀,為幫助學生甲提高成績,選取學生乙,對甲與乙的隨堂測試成績進行對比分析,甲與乙測試成績是否為優(yōu)秀相互獨立已知甲成績優(yōu)秀的概率為以頻率估計概率,乙成績優(yōu)秀的概率為,若,則此二人適合為學習上互幫互助的“對子”在一次隨堂測試中,記為兩人中獲得優(yōu)秀的人數(shù),已知,問二人是否適合結(jié)為“對子”?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,過坐標原點的直線交于,兩點,點在第一象限,軸,垂足為.連結(jié)并延長交于點.
(1)設(shè)到直線的距離為,求的取值范圍;
(2)求面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩陣()滿足(I為單位矩陣).
(1)求m的值;
(2)設(shè),.矩陣變換可以將點P變換為點Q.當點P在直線上移動時,求經(jīng)過矩陣A變換后點Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,求出所有這樣的直線;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在回歸模型中,預報變量的值不能由解釋變量唯一確定
B. 若變量,滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān)
C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓交于不同的兩點.在軸上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com