分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過點A時,直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x-2=0}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,
即A(2,2),
此時z的最大值為z=2+2×2=6,
故答案為:6.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{3}{4}$,7) | B. | [$\frac{2}{3}$,5] | C. | [$\frac{2}{3}$,7] | D. | [$\frac{3}{4}$,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=(x-1)2 | B. | $y=\sqrt{x}$ | C. | y=2x | D. | y=log2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)>f(b)>f(c) | B. | f(b)>f(a)>f(c) | C. | f(c)>f(a)>f(b) | D. | f(c)>f(b)>f(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com