Processing math: 100%
10.如圖,圓C:x2-(2+a)x+y2-ay+2a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>2,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過點(diǎn)M任作一條直線與圓O:x2+y2=10相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.

分析 (Ⅰ)由相切,聯(lián)立方程組,由判別式得到答案.
(Ⅱ)先假設(shè)存在,得到交點(diǎn)坐標(biāo)關(guān)系式,由此得到斜率,進(jìn)而得到角度相等.

解答 解:(Ⅰ)由方程組{y=0x22+ax+y2ay+2a=0

可得:x2-(2+a)x+2a=0,
由題意得△=(2+a)2-8a=(a-2)2=0,
所以a=2
故所求圓C的方程為C:x2-4x+y2-2y+4=0.
(Ⅱ)令y=0,得:x2-(2+a)x+2a=0,即(x-2)(x-a)=0.
所以M(2,0),N(a,0)…(5分)
假設(shè)存在實(shí)數(shù)a,
當(dāng)直線AB與x軸不垂直時(shí),
設(shè)直線AB的方程為:y=k(x-2),
代入x2+y2=10得,(1+k2)x2-4k2x+4k2-10=0,
設(shè)A(x1,y1),B(x2,y2),
x1+x2=4k21+k2x1x2=4k2101+k2
因?yàn)?\frac{y_1}{{{x_1}-a}}+\frac{y_2}{{{x_2}-a}}=\frac{{k[{({x_1}-2)({x_2}-a)+({x_2}-2)({x_1}-a)}]}}{{({x_1}-a)({x_2}-a)}}$
而(x1-2)(x2-a)+(x2-2)(x1-a)=2x1x2-(a+2)(x1+x2)+4a=24k2101+k2a+24k21+k2+4a=4a201+k2
因?yàn)椤螦NM=∠BNM,
所以y1x1a+y2x2a=0,即4a201+k2=0,得a=5.
當(dāng)直線AB與x軸垂直時(shí),也成立.
故存在a=5,使得∠ANM=∠BNM.

點(diǎn)評(píng) 本題考查圓與直線,考查圓的判別式與根的關(guān)系,以及圓與直線的交點(diǎn)坐標(biāo)關(guān)系式,由此得到斜率和角度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等比數(shù)列{an}的首項(xiàng)a1>0,公比為q(|q|<1),滿足a2+a3+…+an+…≤a12,則公比q的取值范圍是(-1,0)∪(0,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=|x|-1,又g(x)={fxx1lnxxx1,若函數(shù)F(x)=g(x)-kx在區(qū)間[-7,+∞)上恰有7個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為( �。�
A.1614B.16,12eC.18,12eD.12e,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)={4xx04x20x2,則22f(x)dx的值為π+10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=12f′(1)x+xlnx
(1)求函數(shù)f(x)的極值;
(2)若k∈Z,且f(x)>k(x-1)對(duì)任意的x∈(1,+∞)都成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.20(4-2x)(4-x2)dx=403

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F與橢圓x24+y23=1的右焦點(diǎn)重合,拋物線C的準(zhǔn)線l與x軸的交點(diǎn)為M,過點(diǎn)M且斜率為k的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P,直線PF與拋物線C交于D,E兩點(diǎn)
(Ⅰ)求拋物線C的方程;
(Ⅱ)若λ=|MA||MB||FD||FE|,寫出λ關(guān)于k的函數(shù)解析式,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}滿足a1=1,an+1=2n+1anan+2n(n∈N*
(1)證明:數(shù)列{2nan}是等差數(shù)列;
(2)設(shè)bn=2n+1an+3,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(lg2)2+lg2•lg50+lg25+eln3=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案