Loading [MathJax]/jax/output/CommonHTML/jax.js
20.(lg2)2+lg2•lg50+lg25+eln3=5.

分析 把lg50化為lg5+1,lg25化為2lg5,利用lg2+lg5=1,結(jié)合對數(shù)運算法則、性質(zhì)能求出結(jié)果.

解答 解:(lg2)2+lg2•lg50+lg25+eln3
=(lg2)2+lg2•(lg5+1)+2lg5+3
=(lg2)2+lg2•lg5+lg2+2lg5+3
=lg2(lg2+lg5)+(lg2+lg5)+lg5+3
=lg2+1+lg5+3
=(lg2+lg5)+4
=5.
故答案為:5.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)、運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,圓C:x2-(2+a)x+y2-ay+2a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>2,圓C與x軸相交于兩點M,N(點M在點N的左側(cè)).過點M任作一條直線與圓O:x2+y2=10相交于兩點A,B.問:是否存在實數(shù)a,使得∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.復數(shù)z=i(3-i)的共軛復數(shù)的虛部是(  )
A.-3iB.-3C.10D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(1-t),且x[012]時,f(x)=-x2,則f32的值等于( �。�
A.94B.94C.14D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若tanα=12,tan(α+β)=34,則tanβ=( �。�
A.17B.211C.2D.57

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在(x2-x+2y)5的展開式中,x4y2的系數(shù)為(  )
A.-120B.120C.30D.-80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an},定義其平均數(shù)是Vn=a1+a2++ann(n≥N*))
(1)若數(shù)列{an}的平均數(shù)Vn=2n-1,求an
(2)若數(shù)列{an}的首項為1,公比為2的等比數(shù)列,其平均數(shù)為Vn,Vn>t-1n對一切n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知x,y滿足{yxx+y2x12,則z=2x-y的最大值等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某小組為了研究中學生的視覺和空間能力是否與性別有關(guān),從學校各年級中按分層抽樣的方法抽取50名同學(男生30人,女生20人).給每位同學難度一致的幾何題和代數(shù)題各一道,讓他們自由選擇一道題進行解答.50名同學選題情況如下表:
幾何體代數(shù)題總計
男同學22830
女同學81220
總計302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(Ⅱ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
參考公式和數(shù)據(jù):K2=nadbc2a+bc+da+cb+d
P(k2≥k)0.100.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步練習冊答案