1.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|-1,又g(x)=$\left\{\begin{array}{l}{f(x),x≤1}\\{\frac{lnx}{x},x>1}\end{array}\right.$,若函數(shù)F(x)=g(x)-kx在區(qū)間[-7,+∞)上恰有7個零點,則實數(shù)k的取值范圍為( 。
A.($\frac{1}{6}$,$\frac{1}{4}$)B.($\frac{1}{6}$,$\frac{1}{2e}$)C.($\frac{1}{8}$,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{2}$)

分析 由題意畫出圖形,求出過原點的直線與y=$\frac{lnx}{x}$相切的直線的斜率,數(shù)形結(jié)合得答案.

解答 解:由f(x+2)=f(x),可知函數(shù)f(x)是周期為2的周期函數(shù);
對于函數(shù)y=$\frac{lnx}{x}$,y′=$\frac{1-lnx}{{x}^{2}}$,當x∈(1,e)時,y′>0,當x∈(e,+∞)時,y′<0,
∴y=$\frac{lnx}{x}$在(1,e)上為增函數(shù),在(e,+∞)上為減函數(shù),$f(x)_{max}=\frac{1}{e}$.
作出函數(shù)y=g(x)與y=kx的圖象如圖:

設(shè)直線y=kx與y=$\frac{lnx}{x}$的切點為(${x}_{0},\frac{ln{x}_{0}}{{x}_{0}}$),函數(shù)y=$\frac{lnx}{x}$在x=x0處的導(dǎo)函數(shù)為$\frac{1-ln{x}_{0}}{{{x}_{0}}^{2}}$,
∴切線方程為y-$\frac{ln{x}_{0}}{{x}_{0}}$=$\frac{1-ln{x}_{0}}{{{x}_{0}}^{2}}$(x-x0),把(0,0)代入,得${x}_{0}=\sqrt{e}$.
∴切點為($\sqrt{e},\frac{1}{2\sqrt{e}}$),則切線斜率為$\frac{1}{2}$,
又當k=$\frac{1}{6}$時y=kx與g(x)在y軸左側(cè)有6個交點,∴k$>\frac{1}{6}$.
∴實數(shù)k的取值范圍是($\frac{1}{6}$,$\frac{1}{2e}$).
故選:B.

點評 本題考查函數(shù)零點的判定定理,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x(x-c)2在x=3處有極小值,則c的值是( 。
A.3或9B.9C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)計算$\frac{\sqrt{3}sin(-1200°)}{tan\frac{11}{3}π}$-cos585°•tan$(-\frac{37π}{4})$
(2)化簡$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}•sin(α-2π)•cos(2π-α)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}中,a1+a3+a5=9,a6=-9,該數(shù)列前n項和最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知偶函數(shù)f(x)的定義域為{x|x≠0,x∈R},且當x>0時,f(x)=$\left\{\begin{array}{l}{{4}^{|x-1|},0<x≤2}\\{f(x-2),x>2}\end{array}\right.$,則函數(shù)g(x)=f(x)-log2(|x|+1)(x∈[-6,6])的零點個數(shù)為( 。
A.9B.10C.8D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-1,函數(shù)g(x)=2tlnx,t≤1.
(1)如果函數(shù)f(x)與g(x)在x=1處的切線均為l,求切線l的方程及t的值;
(2)討論函數(shù)h(x)=f(x)-g(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=log2x+2x-$\frac{\sqrt{2}}{2}$的零點在區(qū)間( 。﹥(nèi).
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,圓C:x2-(2+a)x+y2-ay+2a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>2,圓C與x軸相交于兩點M,N(點M在點N的左側(cè)).過點M任作一條直線與圓O:x2+y2=10相交于兩點A,B.問:是否存在實數(shù)a,使得∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.復(fù)數(shù)z=i(3-i)的共軛復(fù)數(shù)的虛部是( 。
A.-3iB.-3C.$\sqrt{10}$D.-1

查看答案和解析>>

同步練習冊答案