4.微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下,對(duì)它們搶到的紅包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如表數(shù)據(jù):
型號(hào)
手機(jī)品牌
甲品牌(個(gè))438612
乙品牌(個(gè))57943
(Ⅰ)如果搶到紅包個(gè)數(shù)超過5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則“非優(yōu)”,請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.
①求在型號(hào)Ⅰ被選中的條件下,型號(hào)Ⅱ也被選中的概率;
②以X表示選中的手機(jī)型號(hào)中搶到的紅包超過5個(gè)的型號(hào)種數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)根據(jù)題意列出2×2列聯(lián)表,根據(jù)2×2列聯(lián)表,代入求臨界值的公式,求出觀測(cè)值,利用觀測(cè)值同臨界值表進(jìn)行比較,K2=0.4<2.706,可得到?jīng)]有足夠的理由認(rèn)為手機(jī)系統(tǒng)與咻得紅包總金額的多少有關(guān);
(Ⅱ)由題意求得X的取值1,2,3,運(yùn)用排列組合的知識(shí),可得各自的概率,求得X的分布列,由期望公式計(jì)算即可得到(X).

解答 解:(Ⅰ)根據(jù)題意列出2×2列聯(lián)表如下:

紅包個(gè)數(shù)
手機(jī)品牌
優(yōu)非優(yōu)合計(jì)
甲品牌(個(gè))325
乙品牌(個(gè))235
合計(jì)5510
…(2分)
${K^2}=\frac{{10{{({4-9})}^2}}}{5×5×5×5}=\frac{10×25}{25×25}=0.4<2.072$,
所以沒有85%的理由認(rèn)為搶到紅包個(gè)數(shù)與手機(jī)品牌有關(guān).                …(4分)
(Ⅱ)①令事件C為“型號(hào) I被選中”;事件D為“型號(hào) II被選中”,
則$P(C)=\frac{C_4^2}{C_5^3}=\frac{3}{5}\;,\;P(CD)=\frac{C_3^1}{C_5^3}=\frac{3}{10}$,
所以$P(\left.D\right|C)=\frac{P(CD)}{P(C)}=\frac{1}{2}$.                                        …(6分)
②隨機(jī)變量X的所有可能取值為1,2,3,…(7分)
$P({X=1})=\frac{C_3^1•C_2^2}{C_5^3}=\frac{3}{10}$;
$P({X=2})=\frac{C_2^1C_3^2}{C_5^3}=\frac{3}{5}$;
$P({X=3})=\frac{C_3^3}{C_5^3}=\frac{1}{10}$.   …(10分)
故X的分布列為:
X123
P$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
∴數(shù)學(xué)期望E(X),$E(X)=1×\frac{3}{10}+2×\frac{3}{5}+3×\frac{1}{10}=1.8$.…(12分)

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)知識(shí)的運(yùn)用,考查超幾何分布的計(jì)算公式、分布列和數(shù)學(xué)期望及其排列與組合的計(jì)算公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的一元二次方程3x2-2x+k=0,根據(jù)下列條件,分別求出k的范圍:
(1)方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)方程有兩個(gè)相等的實(shí)數(shù)根;
(3)方程有實(shí)數(shù)根;
(4)方程無實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAB⊥底面ABCD.
(1)證明:平面PDA⊥平面PBA;
(2)若AB=2,BC=$\sqrt{2}$,PA=PB,四棱錐P-ABCD的體積為$\frac{{2\sqrt{6}}}{3}$,求BD與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用a1a2…an表示一個(gè)n位數(shù),其中a1,a2,…,an表示各個(gè)位上的數(shù),若($\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$)2=$\overline{{a}_{1}{a}_{2}…{a}_{k}{a}_{k+1}…{a}_{n}}$,則稱正整數(shù)$\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$為K數(shù),如(8+1)2=81,(30+25)2=3025,即9和55都是K數(shù),則下面四個(gè)命題:
①個(gè)位數(shù)的K數(shù)只有9;②45不是K數(shù);③99是一個(gè)K數(shù);④10n-1(n∈N*)是一個(gè)K數(shù);
正確命題的序號(hào)為①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3.
(1)求p的值;
(2)求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程log3x+x-2=0的解的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.4月23日是世界讀書日,為提高學(xué)生對(duì)讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識(shí),某高中的校學(xué)生會(huì)開展了主題為“讓閱讀成為習(xí)慣,讓思考伴隨人生”的實(shí)踐活動(dòng),校學(xué)生會(huì)實(shí)踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:
 喜歡讀紙質(zhì)書不喜歡讀紙質(zhì)書合計(jì)
16420
81220
合計(jì)241640
(Ⅰ)根據(jù)如表,能否有99%的把握認(rèn)為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?
(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下列的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的圖象C在x=-$\frac{1}{2}$處的切線方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若求a,b的值,并證明:當(dāng)x∈(-∞,2]時(shí),g(x)的圖象C上任意一點(diǎn)都在切線y=$\frac{3}{4}x+\frac{9}{8}$上或在其下方;
(2)求證:當(dāng)x∈(-∞,2]時(shí),f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知2B=A+C,b2=ac,則B-A=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案