14.已知命題p:?x∈R,x2+1>0,命題q:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$.在命題①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

分析 命題p是真命題.命題q:當(dāng)$\overrightarrow=\overrightarrow{0}$時(shí),不一定成立.再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:?x∈R,x2+1>0,是真命題.
命題q:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,是假命題,當(dāng)$\overrightarrow=\overrightarrow{0}$時(shí),不一定成立.
在命題①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命題是②③.
故選:C.

點(diǎn)評(píng) 本題考查了特稱命題的判定方法、復(fù)合命題真假的判定方法、向量共線、二次函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面上兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中:
①y=x+1 ②y=2 ③y=$\frac{4}{3}$x ④y=2x+1
是“單曲型直線”的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若cosθ<0,且$cosθ-sinθ=\sqrt{1-sin2θ}$,那么θ是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在正三棱柱△ABC-△A1B1C1中,AB=1,點(diǎn)D在棱BB1上,若BD=1,則AD與平面AA1C1C所成角的正切值為$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrowa=({2,1}),\overrightarrowb=({3,λ})$,若$\overrightarrowa⊥\overrightarrowb$,則λ=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示橢圓”是“-3<m<5”的( 。l件.
A.必要不充分B.充要C.充分不必要D.不充分不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)y=x2+x-1在(1,1)處的切線方程是3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.F1,F(xiàn)2分別是橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A(3,0),F(xiàn)2恰為線段AF1的中點(diǎn),橢圓Γ的離心率為$\frac{1}{2}$(I)求橢圓Γ的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓Γ在第一象限上的任一點(diǎn),連接PF1,PF2,過P點(diǎn)作斜率為k的直線l,使得l與橢圓Γ有且只有一個(gè)公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,試證明$\frac{1}{k{k}_{1}}$+$\frac{1}{k{k}_{2}}$為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知P:(a-2)(a-3)=0,q:a=2,則P是q的( 。
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案