分析 由已知點P在以M、N為焦點的雙曲線的右支上,即$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$,(x>0).分別與①②③④中的直線聯(lián)立方程組,根據(jù)方程組的解的性質(zhì)判斷該直線是否為“單曲型直線”.
解答 解:∵|PM|-|PN|=6∴點P在以M、N為焦點的雙曲線的右支上,即$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$,(x>0).
對于①,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=x+1}\end{array}\right.$,消y得7x2-18x-153=0,
∵△=(-18)2-4×7×(-153)>0,∴y=x+1是“單曲型直線”.
對于②,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=2}\end{array}\right.$,消y得x2=$\frac{15}{4}$,∴y=2是“單曲型直線”.
對于③,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=\frac{x}{4}}\end{array}\right.$,整理得144=0,不成立.∴$y=\frac{4}{3}x$不是“單曲型直線”.
對于④,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=2x+1}\end{array}\right.$,消y得20x2+36x+153=0,
∵△=362-4×20×153<0∴y=2x+1不是“單曲型直線”.
故符合題意的有①②.
故答案為:①②.
點評 本題考查“單曲型直線”的判斷,是中檔題,解題時要認真審題,注意雙曲線定義的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 對任意x∈R,都有x 2<ln2 | B. | 不存在x∈R,都有x 2<ln2 | ||
C. | 存在x∈R,使得x 2≥ln2 | D. | 存在x∈R,使得x 2<ln2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | l∥α | B. | l⊥α | ||
C. | l?α | D. | l與α相交但不垂直 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com