8.在直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),B(1,1),C(-1,2),點(diǎn)P(x,y)在四邊形OABC的四邊圍成的區(qū)域內(nèi)(含邊界),則z=x-2y的最大值是( 。
A.5B.-5C.2D.4

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x-2y,得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直線(xiàn)y=$\frac{1}{2}x-\frac{z}{2}$,由圖象可知當(dāng)直線(xiàn)y=$\frac{1}{2}x-\frac{z}{2}$經(jīng)過(guò)點(diǎn)A(2,0)時(shí),直線(xiàn)y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,
此時(shí)z最大,此時(shí)zmax=2-2×0=2.
故選:C.

點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖所示,則A=2,f(-$\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=( 。
A.±1B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,滿(mǎn)足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線(xiàn)上,O為直線(xiàn)AB外一點(diǎn),記數(shù)列{an}的前n項(xiàng)和為Sn,則S2015的值為(  )
A.$\frac{2015}{2}$B.2015C.2016D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸入n的值為2,則輸出的結(jié)果是( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{i^8}{1-i}$(其中i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x,y滿(mǎn)足約束條件$\left\{{\begin{array}{l}{\sqrt{3}x-y+\sqrt{3}≥0}\\{\sqrt{3}x+y-\sqrt{3}≤0}\\{y≥0}\end{array}}\right.$,則當(dāng)$\frac{y+1}{x+3}$取最大值時(shí),x+y的值為( 。
A.-1B.1C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17. 如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,點(diǎn)E是SB的中點(diǎn),∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD為等邊三角形.
(Ⅰ)求證:SD∥平面ACE;
(Ⅱ)求三棱錐S-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$的極大值點(diǎn)x0∈(-1,-$\frac{1}{2}$),則實(shí)數(shù)a的取值范圍為(  )
A.(0,4$\sqrt{2}$)B.(1,4)C.(-∞,4$\sqrt{2}$)D.($\sqrt{2}$,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案