已知函數(shù)f(x)=ex(4x+4)-x2-4x,求:
(Ⅰ)f(x)的單調(diào)區(qū)間;       
(Ⅱ)f(x)極大值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),即可求出f(x)的單調(diào)區(qū)間;       
(Ⅱ)利用函數(shù)極值的定義,即可求出f(x)極大值.
解答: 解:(I) f'(x)=ex(4x+4)+4 ex-2x-4=4 ex(x+2)-2(x+2)=(x+2)(4 ex-2),…(2分)
令f′(x)=0,得x=-2,或ln
1
2
,顯然-2<ln
1
2

當(dāng)x<-2,或x>ln
1
2
時(shí),f′(x)>0,則f(x)為增函數(shù),得增區(qū)間為(-∞,-2)、(ln
1
2
,+∞)
;  …(4分)
當(dāng)-2<x<ln
1
2
時(shí),f′(x)<0,則f(x)為減函數(shù),得減區(qū)間為(-2,ln
1
2
)
.…(6分)
(II)由(I)知,當(dāng)x=-2時(shí),f(x)有極大值f(-2)=-4e-2-4+8=4-4e-2.…(12分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究函數(shù)的極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-6x+1的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)給定三個(gè)向量
a
=(3,2),
b
=(-1,2),
c
=(4,1),回答下列問(wèn)題:
(1)求滿足
a
=m
b
+n
c
的實(shí)數(shù)m,n;
(2)若(
a
+k
b
)⊥(2
b
-
c
),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-4)(x-
1
2
).
(1)求f′(x);
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)證明
a
b
;
(2)若向量
c
=(2
3
+2,2
3
-2)試用
a
b
表示
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(
3
,
1
2
),離心率e=
3
2

(1)求橢圓的方程:
(2)若直線y=kx+2與橢圓有兩個(gè)交點(diǎn),求出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3x,tanβ=3-x,α-β=
π
6
,求x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長(zhǎng)為6的兩個(gè)全等的等腰直角三角形.
(Ⅰ)請(qǐng)畫(huà)出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCD-A1B1C1D1?如何組拼?試證明你的結(jié)論;
(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD-A1B1C1D1的棱CC1的中點(diǎn)為E,求平面AB1E與平面ABC所成二面角的余弦值.(改編)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x+m•2x+1.
(1)若m=-
5
2
,求函數(shù)f(x)的零點(diǎn);
(2)設(shè)t=2x,試將f(x)表示為t的函數(shù)g(t),并求當(dāng)x∈[-1,1]時(shí)g(t)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案