分析 (1)由判別式等于零,求得a的值.
(2)根據(jù)y≥0恒成立,利用判別式求得a的范圍.
解答 解:(1)∵函數(shù)f(x)=x2+4ax+2a+6的值域?yàn)閇0,+∞),
∴△=16a2-4(2a+6)=0,求得a=-1,或a=$\frac{3}{2}$,
∴實(shí)數(shù)a的值所組成的集合為{a|a=-1,或a=$\frac{3}{2}$}.
(2)依題意,y≥0恒成立,則△=16a2-4(2a+6)≤0,解得-1≤a≤$\frac{3}{2}$,
∴實(shí)數(shù)a的值所組成的集合為{a|-1≤a≤$\frac{3}{2}$}.
點(diǎn)評(píng) 本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,考查二次函數(shù)的值域問(wèn)題,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{33}{65}$ | B. | $\frac{34}{65}$ | C. | -$\frac{34}{65}$ | D. | -$\frac{33}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | Q?P | B. | Q?P | C. | P∩Q={2,4} | D. | P∩Q={(2,4)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com