【題目】在平面直角坐標(biāo)系中,已知圓,圓.
(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)圓是以1為半徑,圓心在圓:上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓 的兩條切線,切點(diǎn)為,求的取值范圍;
(3)若動(dòng)圓同時(shí)平分圓的周長(zhǎng)、圓的周長(zhǎng),則動(dòng)圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
【答案】(1)或(2)(3)所求的定點(diǎn)坐標(biāo)為
【解析】
試題分析:(Ⅰ)設(shè)直線l的方程為y=k(+1),根據(jù)直線l被圓C2截得的弦長(zhǎng)為,利用勾股定理,求出k,即可求直線l的方程;(Ⅱ)動(dòng)圓D是圓心在定圓上移動(dòng),半徑為1的圓,由圓的幾何性質(zhì)得,|DC1|-r≤|PC1|≤|DC1|+r,即2≤|PC1|≤4,4≤|PC1|2≤16,利用向量的數(shù)量積公式,即可求
的取值范圍;(Ⅲ)確定動(dòng)圓圓心C在定直線x+y-3=0上運(yùn)動(dòng),求出動(dòng)圓C的方程,即可得出結(jié)論.
試題解析:(1)設(shè)直線的方程為,即. 因?yàn)橹本被圓截得的弦長(zhǎng)為,而圓的半徑為1,所以圓心到:的距離為.化簡(jiǎn),得,解得或.所以直線的方程為或.
(2) 動(dòng)圓D是圓心在定圓上移動(dòng),半徑為1的圓
設(shè),則在中,,
有,則
由圓的幾何性質(zhì)得,,即,
則的最大值為,最小值為. 故
(3)設(shè)圓心C(x,y),由題意得CC1=CC2,
即,整理得x+y-3=0,即圓心C在定直線x+y-3=0上運(yùn)動(dòng).
設(shè)C(m,3-m),
則動(dòng)圓的半徑,
于是動(dòng)圓C的方程為(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2,
整理得:x2+y2-6y-2-2m(x-y+1)=0.
由,
解得或,
即所求的定點(diǎn)坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若函數(shù)在處有極值,求函數(shù)的最大值;
(2)①是否存在實(shí)數(shù),使得關(guān)于的不等式在上恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由;
②證明:不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線上一點(diǎn),作兩條直線分別交拋物線于,,當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí):
(Ⅰ)求的值;
(Ⅱ)若直線在軸上的截距時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓,圓.
(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)圓是以1為半徑,圓心在圓:上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓 的兩條切線,切點(diǎn)為,求的取值范圍;
(3)若動(dòng)圓同時(shí)平分圓的周長(zhǎng)、圓的周長(zhǎng),則動(dòng)圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),其最小正周期為.
(1)求在區(qū)間上的減區(qū)間;
(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得的圖象向右平移個(gè)單位,得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且滿(mǎn)足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log,Sn=b1+b2+…+bn,求使成立的正整數(shù)n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題實(shí)數(shù)滿(mǎn)足(其中),命題實(shí)數(shù)滿(mǎn)足
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓方程+=1(a>b>0),橢圓上一點(diǎn)到兩焦點(diǎn)的距離和為4,過(guò)焦點(diǎn)且垂直于x軸的直線交橢圓于A,B兩點(diǎn),AB=2.
(1)求橢圓方程;
(2)若M,N是橢圓C上的點(diǎn),且直線OM與ON的斜率之積為﹣,是否存在動(dòng)點(diǎn)P(x0,y0),若=+2,有x02+2y02為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專(zhuān)題發(fā)言,求這二人都來(lái)自高校的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com