5.先畫(huà)一個(gè)邊長(zhǎng)為2的正方形,再將這個(gè)正方形的各邊中點(diǎn)相連得到第2個(gè)正方形,依此類推,則第10個(gè)正方形的面積為$\frac{1}{128}$.(用最簡(jiǎn)分?jǐn)?shù)表示)

分析 根據(jù)正方形的面積成等比數(shù)列求出第10個(gè)正方形的面積即可.

解答 解:第一個(gè)正方形的面積是4,
第二個(gè)正方形的面積是2,
第三個(gè)正方形的面積是1,
…,
故第n個(gè)正方形的面積是:4•${(\frac{1}{2})}^{n-1}$,
故第10個(gè)正方形的面積是:4×$\frac{1}{{2}^{9}}$=$\frac{1}{{2}^{7}}$=$\frac{1}{128}$,
故答案為:$\frac{1}{128}$.

點(diǎn)評(píng) 考查學(xué)生掌握等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式,會(huì)利用數(shù)學(xué)歸納法進(jìn)行歸納總結(jié)得到一般性的規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(2x+1)=3x-2,且f(a)=4,則a的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.計(jì)算:cos150°+cos(-150°)=$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在點(diǎn)(0,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為-2.
(Ⅰ)求a的值;
(Ⅱ)求曲線y=f(x)與直線y=x-2交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=x2sinx的導(dǎo)函數(shù)為y′=2xsinx+x2cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.記實(shí)數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn},則max{min{x+1,x2-x+1,-x+6}}=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(5-a)x+b的遞減區(qū)間是(1,2),則實(shí)數(shù)a的值或取值范圍是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=$\sqrt{2x+1}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-\frac{1}{2},+∞)$B.$[{-\frac{1}{2},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,-\frac{1}{2}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案