分析 (1)通過${a_2}=\frac{1}{3}$、q=$\frac{1}{3}$可知首項,進而可得通項、前n項和的表達式,整理即得結(jié)論;
(2)通過an=$\frac{1}{{3}^{n-1}}$、對數(shù)的性質(zhì)可知log3an=-n+1,進而計算即得結(jié)論.
解答 (1)證明:∵${a_2}=\frac{1}{3}$,q=$\frac{1}{3}$
∴a1=$\frac{{a}_{2}}{q}$=$\frac{\frac{1}{3}}{\frac{1}{3}}$=1,
∴an=$\frac{1}{{3}^{n-1}}$,Sn=$\frac{3}{2}$(1-$\frac{1}{{3}^{n}}$),
∴Sn=$\frac{{3-{a_n}}}{2}$;
(2)解:∵an=$\frac{1}{{3}^{n-1}}$,
∴l(xiāng)og3an=log3$\frac{1}{{3}^{n-1}}$=-n+1,
∴bn=log3a1+log3a2+…+log3an
=-(1+2+3+…+n)+n
=-$\frac{n(n+1)}{2}$+n
=-$\frac{n(n-1)}{2}$.
點評 本題考查數(shù)列的通項及前n項和,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
≥170cm | <170cm | 總計 | |
男生身高 | |||
女生身高 | |||
總計 |
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
資金 | 每臺空調(diào)或冰箱所需資金(百元) | 月資金供應數(shù)量 (百元) | |
空調(diào) | 冰箱 | ||
成本 | 30 | 20 | 300 |
工人工資 | 5 | 10 | 110 |
每臺利潤 | 6 | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com