5.某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.

(Ⅰ)試問在抽取的學(xué)生中,男、女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分幾)的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm<170cm總計(jì)
男生身高
女生身高
總計(jì)
(Ⅲ)在上述80名學(xué)生中,從身高在170~175cm之間的學(xué)生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

分析 (Ⅰ)由直方圖中身高在170~175cm的男生的頻率為0.08×5=0.4,可得男生數(shù)為40.由男生的人數(shù)為40,得女生的人數(shù)為80-40=40;
(Ⅱ)求出男生身高≥170cm的人數(shù),女生身高≥170cm的人數(shù),得到2×2列聯(lián)表,求出k2,則答案可求;
(Ⅲ)求出在170~175cm之間的男生有16人,女生人數(shù)有4人.再由分層抽樣的方法抽出5人,得到男生占4人,女生占1人.然后利用枚舉法得到選派3人的方法種數(shù),求出3人中恰好有一名女生的種數(shù),利用古典概率模型計(jì)算公式得答案.

解答 解:(Ⅰ)直方圖中,
∵身高在170~175cm的男生的頻率為0.08×5=0.4,
設(shè)男生數(shù)為n1,則$0.4=\frac{16}{n_1}$,得n1=40.
由男生的人數(shù)為40,得女生的人數(shù)為80-40=40.
(Ⅱ)男生身高≥170cm的人數(shù)=(0.08+0.04+0.02+0.01)×5×40=30,女生身高≥170cm的人數(shù)0.02×5×40=4,所以可得到下列列聯(lián)表:

≥170cm<170cm總計(jì)
男生身高301040
女生身高43640
總計(jì)344680
${K^2}=\frac{{80×{{(30×36-10×4)}^2}}}{40×40×34×46}≈34.58>10.828$,
∴能有99.9%的把握認(rèn)為身高與性別有關(guān);
(Ⅲ)在170~175cm之間的男生有16人,女生人數(shù)有4人.
按分層抽樣的方法抽出5人,則男生占4人,女生占1人.
設(shè)男生為A1,A2,A3,A4,女生為B.
從5人任選3名有:(A1,A2,A3),(A1,A2,A4),(A1,A2,B),(A1,A3,A4),(A1,A3,B),(A1,A4,B),(A2,A3,A4),(A2,A3,B),
(A2,A4,B),(A3,A4,B),共10種可能,
3人中恰好有一名女生有:(A1,A2,B),(A1,A3,B),(A1,A4,B),(A2,A3,B),(A2,A4,B),(A3,A4,B),共6種可能,
故所求概率為$\frac{6}{10}=\frac{3}{5}$.

點(diǎn)評(píng) 本小題主要考查頻率分布直方圖、2×2列聯(lián)表和概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力以及應(yīng)用用意識(shí),考查必然與或然思想、分類與整合思想等,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax3+bx2+cx在x=1和x=-3處取得極值,且f(1)=-5
(1)求函數(shù)的解析式;
(2)若在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍;
(3)若關(guān)于x的方程f(x)=a至少有兩個(gè)不同實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x∈R,x-2>lgx,命題q:?x∈R,ex>1,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(?q)是假命題D.命題p∨(?q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=$\frac{1}{\sqrt{x-1}}$的定義域是( 。
A.[1,+∞)B.(1,+∞)C.(1,2)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若曲線y=alnx(a≠0)與曲線y=$\frac{1}{2e}$x2在它們的公共點(diǎn)P(s,t)處具有公共切線,則$\frac{s}{t}$=2$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=(x2-ax)ex(x∈R),a為實(shí)數(shù),若函數(shù)f(x)在閉區(qū)間[-1,1]上不是減函數(shù),則實(shí)數(shù)a的取值范圍是$(-∞,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$.
(1)Sn為{an}的前n項(xiàng)和,證明:sn=$\frac{{3-{a_n}}}{2}$
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列bn的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)a,b,則“2a>2b”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果方程x2+(m-1)x+m2-2=0的兩個(gè)實(shí)根一個(gè)小于-1,另一個(gè)大于1,那么實(shí)數(shù)m的取值范圍是( 。
A.-$\sqrt{2}$<m<$\sqrt{2}$B.-2<m<0C.-2<m<1D.0<m<1

查看答案和解析>>

同步練習(xí)冊(cè)答案