【題目】已知函數(shù)f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期為π.

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;

2)將函數(shù)f(x)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.

【答案】(1);(2).

【解析】

試題分析:(1)第一步根據(jù)降冪公式,化簡,第二步,對降冪后的式子,再根據(jù)輔助角公式化簡,得到,令得到函數(shù)的單調(diào)遞增區(qū)間;(2)根據(jù)三角函數(shù)的圖像變換規(guī)律,左+右-,上+下-,得到函數(shù),,得到的值根據(jù)的取值集合,只需大于等于 10個點的橫坐標(biāo)即可.

試題解析:(1)由題意得f(x)=2sinωxcosωx+2sin2ωx﹣=sin2ωx﹣cos2ωx=2sin(2ωx﹣),由最小正周期為π,得ω=1,

所以,

,整理得

所以函數(shù)f(x)的單調(diào)增區(qū)間是

2)將函數(shù)f(x)的圖象向左平移個單位,再向上平移1個單位,得到y(tǒng)=2sin2x+1的圖象,所以g(x)=2sin2x+1,

令g(x)=0,得,

所以在[0,π]上恰好有兩個零點,若y=g(x)在[0,b]上有10個零點,

則b不小于第10個零點的橫坐標(biāo)即可,即b的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,側(cè)棱,底面為直角梯形,其中,中點.

(1)求證:;

2求異面直線所成角的余弦值;

3線段上是否存在,使得它到平面的距離為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[6070),[70,80),[80,90),[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷對錯.

1)若a>b,則ac>bc一定成立.______

2)若ac>bd,則a>b,c>d.______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)fx)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx

0

π

x

Asin(ωx+φ)

0

3

0

-3

0

(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

(2)令g(x)=f (x+)-,當(dāng)x∈[, ]時,恒有不等式g(x)-a-3<0成立,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點, ,點滿足,其中 ,且;圓的圓心軸上,且與點的軌跡相切與點.

(1)求圓的方程;

(2)若點,點是圓上的任意一點,求的取值范圍;

(3)過點的兩條直線分別與圓交于、兩點,若直線的斜率互為相反數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足,

(I)求數(shù)列的通項公式;

(II)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的頂點C在直線3x﹣y=0上,頂點A、B的坐標(biāo)分別為(4,2),(0,5).

)求過點A且在x,y軸上的截距相等的直線方程;

)若ABC的面積為10,求頂點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系過點的直線與拋物線相交于點、兩點,設(shè),

1求證:為定值;

2是否存在平行于軸的定直線被以為直徑的圓截得的弦長為定值如果存在,求出該直線方程和弦長,如果不存在說明理由

查看答案和解析>>

同步練習(xí)冊答案