2.某小學(xué)為迎接校運(yùn)動(dòng)會(huì)的到來,在三年級(jí)招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動(dòng),其他人員不喜歡運(yùn)動(dòng).
(Ⅰ)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡運(yùn)動(dòng)不喜歡運(yùn)動(dòng)總計(jì)
a=b=
c=d=
總計(jì)n=
(Ⅱ)判斷性別與喜歡運(yùn)動(dòng)是否有關(guān),并說明理由.
(Ⅲ)如果喜歡運(yùn)動(dòng)的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動(dòng)的女志愿者中抽取2名負(fù)責(zé)醫(yī)療救護(hù)工作,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:${Χ^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}({n=a+b+c+d})$
臨界值表(部分):
P(χ2≥x00.0500.0250.0100.001
x03.8415.0246.63510.828

分析 (Ⅰ)根據(jù)2×2列聯(lián)表可得表中的數(shù)據(jù);
(Ⅱ)求出χ2值,查表,與臨界值比較,即可得出結(jié)論;
(Ⅲ)列出所有的基本事件,由古典概型求概率.

解答 解:(Ⅰ)由已知得

喜歡運(yùn)動(dòng)不喜歡運(yùn)動(dòng)總計(jì)
10616
6814
總計(jì)161430
(4分)
(Ⅱ)假設(shè):是否喜歡運(yùn)動(dòng)與性別無關(guān),由已知數(shù)據(jù)可求得:
χ2=$\frac{30×(10×8-6×6)^{2}}{16×14×16×14}$≈1.1575<3.841.(7分)
因此,我們認(rèn)為喜歡運(yùn)動(dòng)與性別無關(guān).(8分)
(Ⅲ)喜歡運(yùn)動(dòng)的女志愿者有6人,
設(shè)分別為A、B、C、D、E、F,其中A、B、C、D懂得醫(yī)療救護(hù),
則從這6人中任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15種取法,
其中兩人都懂得醫(yī)療救護(hù)的有AB,AC,AD,BC,BD,CD,共6種.(10分)
設(shè)“抽出的志愿者中2人都能勝任醫(yī)療救護(hù)工作”為事件A,
則P(A)=$\frac{6}{15}$=$\frac{2}{5}$.(12分)

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)及古典概型的概率公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的側(cè)面PAB的面積是(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱柱P-ABCD中,底面ABCD為矩形,△PCD為等邊三角形,$BC=\sqrt{2}AB$,點(diǎn)M為BC中點(diǎn),平面PCD⊥平面ABCD.
(1)求證:PD⊥BC;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若對(duì)任意m,n∈(0,e)且m≠n,有$\frac{f(m)-f(n)}{m-n}<1$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為觀察高血壓的發(fā)病是否與性別有關(guān),某醫(yī)院隨機(jī)調(diào)查了60名住院患者,將調(diào)查結(jié)果做成了一個(gè)2×2列聯(lián)表,由于統(tǒng)計(jì)員的失誤,有兩處數(shù)據(jù)丟失,既往的研究證實(shí),女性患者高血壓的概率為0.4,如果您是該統(tǒng)計(jì)員,請(qǐng)你用所學(xué)知識(shí)解答如下問題:
患高血壓不患高血壓合計(jì)
m6
12n
合計(jì)60
(1)求出m,n,并探討是否有99.5%的把握認(rèn)為患高血壓與性別有關(guān)?說明理由;
(2)已知在不患者高血壓的6名男性病人中,有3為患有胃病,現(xiàn)從不患有高血壓疾病的6名男性中,隨機(jī)選出2名進(jìn)行生活習(xí)慣調(diào)查,求這2人恰好都是胃病患者的概率.
附:①臨界值表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,其中俯視圖下半部分是半徑為1的半圓,則該幾何體的表面積是(  )
A.20+2πB.20+πC.20-2πD.20-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積是( 。
A.3+$\frac{\sqrt{3}}{2}$B.2+$\sqrt{3}$C.2+$\frac{\sqrt{6}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{1+x}{1-x}$e-ax,若對(duì)任意x∈(0,1),恒有f(x)>1,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,2]B.(-∞,0]C.[0,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案