【題目】如圖,在半徑為3的圓形(為圓心)鋁皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.
(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積最大?最大體積是多少?(圓柱體積公式: , 為圓柱的底面積, 為圓柱的高)
【答案】(1)其中.(2)當(dāng)為 時(shí),做出的圓柱形罐子體積最大,最大體積是 .
【解析】試題分析:(1)連接OB,在Rt△OAB中,由AB=x,利用勾股定理可得,設(shè)圓柱底面半徑為r,則=2πr,即可得出r.利用V=πr2x(其中0<x<30)即可得出.(2)利用導(dǎo)數(shù)V′,得出其單調(diào)性,即可得出結(jié)論.
試題解析:
⑴連結(jié),因?yàn)?/span>,所以,設(shè)圓柱底面半徑為,則,即,所以,其中.
⑵由及,得,
列表如下:
極大值 |
所以當(dāng)時(shí), 有極大值,也是最大值為.
答:當(dāng)為 時(shí),做出的圓柱形罐子體積最大,最大體積是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點(diǎn)
(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長AB;
(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題橢圓C1: 表示的是焦點(diǎn)在軸上的橢圓,命題對(duì),直線與橢圓C2: 恒有公共點(diǎn).
(1)若命題“”是假命題,命題“”是真命題,求實(shí)數(shù)的取值范圍.
(2)若真假時(shí),求橢圓C1、橢圓C2的上焦點(diǎn)之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是平面,,是直線,給出下列命題:
①若,,則;
②若,,,,則;
③如果,,,是異面直線,則與相交;
④若.,且,,則,且
其中正確確命題的序號(hào)是_____(把正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使? 若存在,求出符合條件的所有的值構(gòu)成的集合;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求過點(diǎn),斜率是直線的斜率的的直線方程;
(2)求經(jīng)過點(diǎn),且在軸上的截距等于在軸上截距的2倍的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com