分析 (1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),運用離心率公式和a,b,c的關(guān)系,解得a,b,即可得到橢圓方程;
(2)設(shè)橢圓方程為mx2+ny2=1,(m,n>0),由題意代入點(-6,0)和(0,8),解方程即可得到橢圓方程;
(3)討論橢圓的焦點的位置,由題意可得a-c=4,a+c=10,解方程可得a,c,再由a,b,c的關(guān)系解得b,即可得到橢圓方程.
解答 解:(1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得,2a=12,e=$\frac{2}{3}$,
即有a=6,$\frac{c}{a}$=$\frac{2}{3}$,即有c=4,
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{36-16}$=2$\sqrt{5}$,
即有橢圓方程為$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1;
(2)設(shè)橢圓方程為mx2+ny2=1,(m,n>0),
由題意代入點(-6,0)和(0,8),可得
36m+0=1,且0+64n=1,
解得m=$\frac{1}{36}$,n=$\frac{1}{64}$,
即有橢圓方程為$\frac{{y}^{2}}{64}$+$\frac{{x}^{2}}{36}$=1;
(3)當焦點在x軸上時,可設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得a-c=4,a+c=10,
解得a=7,c=3,
b=$\sqrt{{a}^{2}-{c}^{2}}$=2$\sqrt{10}$,
即有橢圓方程為$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{40}$=1;
同理,當焦點在y軸上時,可得橢圓方程為$\frac{{y}^{2}}{49}$+$\frac{{x}^{2}}{40}$=1.
即有橢圓方程為$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{40}$=1或$\frac{{y}^{2}}{49}$+$\frac{{x}^{2}}{40}$=1.
點評 本題考查橢圓的方程和性質(zhì),主要考查橢圓的方程的求法,注意運用橢圓的方程的正確設(shè)法,以及橢圓性質(zhì)的運用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>-2} | B. | {x|-2<x<0} | C. | {x|0<x<1} | D. | {x|-2<x≤0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |x1-(a+bx1)|+|x2-(a+bx2)|+|x3-(a+bx3)| | B. | [x1-(a+bx1)]2+[x2-(a+bx2)]2+[x3-(a+bx3)]2 | ||
C. | |y1-(a+bx1)|+|y2-(a+bx2)|+|y3-(a+bx3)| | D. | [y1-(a+bx1)]2+[y2-(a+bx2)]2+[y3-(a+bx3)]2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21π | B. | 18π | C. | 12π | D. | 9π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組序 | 高度區(qū)間 | 頻數(shù) | 頻率 |
1 | [230,235) | 8 | 0.16 |
2 | [235,240) | ① | 0.24 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 10 | ③ |
5 | [250,255] | 5 | ④ |
合計 | 50 | 1.00 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com