18.若二項式(3x2-$\frac{2}{\root{3}{x}}$)n(n∈N*)展開式中含有常數(shù)項,則n的最小取值是( 。
A.4B.5C.6D.7

分析 利用二項展開式的通項公式求出展開式的通項,令x的指數(shù)為0方程有解.由于n,r都是整數(shù)求出最小的正整數(shù)n.

解答 解:展開式的通項為Tr+1=3n-r(-2)rCnr${x}^{2n-\frac{7r}{3}}$
令2n-$\frac{7r}{3}$=0,據(jù)題意此方程有解,
∴n=$\frac{7r}{6}$,當(dāng)r=6時,n最小為7.
故選:D.

點評 本題考查利用二項展開式的通項公式解決二項展開式的特定項問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法中,正確的個數(shù)為( 。
(1)$\overrightarrow{AB}$+$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{OM}$+$\overrightarrow{CO}$=$\overrightarrow{AB}$;
(2)已知向量$\overrightarrow{a}$=(6,2)與$\overrightarrow$=(-3,k)的夾角是鈍角,則k的取值范圍是(-∞,9);
(3)向量$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)能作為平面內(nèi)所有向量的一組基底;
(4)若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若動點P在直線l1:x-y+1=0上,動點Q在直線l2:x+y-7=0上,且|PQ|=2,設(shè)線段PQ的中點為M(x0,y0),則x02+y02的取值范圍是[16,36].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人作為樣本,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本100人中抽取日平均生產(chǎn)件數(shù)[60,70)的工人,求“25周歲以上組”和“25周歲以下組”工人的各抽取多少人?
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$(e=2.71828…),其中m,a均為實數(shù).
(1)求g(x)的極值;
(2)設(shè)a=2,若對?給定的x0∈(0,e],在區(qū)間(0,e]上總存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)設(shè)a>b>0,試比較$\frac{{a}^{2}-^{2}}{{a}^{2}+^{2}}$與$\frac{a-b}{a+b}$的大。
(2)設(shè)不等式x2-4x+3<0的解集為A,不等式x2+x-6>0的解集為B.若不等式x2+ax+b<0的解集為A∩B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{e^x}{x+a}$,(a<3且a∈Z),且函數(shù)f(x)在區(qū)間(-1,0)上單調(diào)遞增,定義在R上的函數(shù)g(x)=(x+b)(x2-8),且函數(shù)g(x)在x=1處的切線與直線x-y=0垂直.
(Ⅰ)求函數(shù)f(x)與函數(shù)g(x)的解析式;
(Ⅱ)已知函數(shù)F(x)=$\left\{\begin{array}{l}f(x)•g(x),x≠-2\\-4{e^{-2}},x=-2\end{array}$,試問:是否存在實數(shù)a,b,其中[a,b]⊆(-∞,4],使得函數(shù)F(x)的值域也為[a,b]?若能,請求出相應(yīng)的a、b;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x+1
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{θ}{2}$+$\frac{π}{12}$)=$\frac{5}{6}$,θ∈(0,$\frac{π}{2}$),求cos(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在(1+x)n的展開式中,第9項為( 。
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

同步練習(xí)冊答案