13.直線$\sqrt{2}$ax+by=1與圓x2+y2=1相交于A,B兩點(diǎn)(期中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),求點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最大值.

分析 由△AOB是直角三角形,得${a}^{2}=1-\frac{^{2}}{2}$,由此利用兩點(diǎn)間距離公式能求出點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最大值.

解答 解:∵△AOB是直角三角形,
∴$\frac{1}{\sqrt{2{a}^{2}+^{2}}}$=$\frac{\sqrt{2}}{2}$,
∴2a2+b2=2,∴${a}^{2}=1-\frac{^{2}}{2}$,
則|MP|=$\sqrt{{a}^{2}+(b-1)^{2}}$=$\sqrt{1-\frac{^{2}}{2}+(b-1)^{2}}$=$\sqrt{\frac{1}{2}(b-2)^{2}}$,
∵b2≤2,即-$\sqrt{2}≤b≤\sqrt{2}$,
∴b=-$\sqrt{2}$時,點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離有最大值$\sqrt{2}+1$.

點(diǎn)評 本題考查兩點(diǎn)間距離的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意兩點(diǎn)間距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知四棱錐P-ABCD的底面是正方形,PA⊥底面AC,PA=2AD=2,則它外接球表面積為(  )
A.$\sqrt{6}$πB.C.$\frac{3}{2}$πD.$\frac{\sqrt{6}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=\sqrt{t}\end{array}$(t為參數(shù)),點(diǎn)A(1,0),B(3,-$\sqrt{3}}$),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,且長度單位相同,建立極坐標(biāo)系.
(1)求直線AB的極坐標(biāo)方程;
(2)求直線AB與曲線C交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),過點(diǎn)F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點(diǎn)B.若2$\overrightarrow{AF}$=-$\overrightarrow{FB}$,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.2C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線3x-4y-3=0與直線6x+my+2m=0平行,則它們之間的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)A(3,$\sqrt{3}$),O為坐標(biāo)原點(diǎn),點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$,則滿足條件點(diǎn)P所形成的平面區(qū)域的面積為$\sqrt{3}$,$\overrightarrow{OP}$在$\overrightarrow{OA}$方向上投影的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-3)的實(shí)數(shù)x的取值范圍是(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.A={x|x≤0或x≥2},B={x|x>2},則“x∈A”是“x∈B”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)定義在R上的函數(shù)f(x)滿足:對任意的x,y∈R均有f(x+y)=f(x)+f(y)成立且當(dāng)x>0時,f(x)>0
(1)判斷f(x)的奇偶性并給出證明;
(2)判斷f(x)的單調(diào)性并給出證明;
(3)若f(1)=1,解關(guān)于x的不等式f(x2+2x)+f(1-x)>3.

查看答案和解析>>

同步練習(xí)冊答案