求函數(shù)f(x)=x2-2ax在x∈[-1,1]上的最小值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=(x-a)2-a2,在[-1,1]上,分對(duì)稱軸x=a在區(qū)間[-1,1]的左側(cè)、中間、右側(cè)三種情況,分別求得函數(shù)的最小值.
解答: 解:函數(shù)f(x)=x2-2ax=(x-a)2-a2,在[-1,1]上,
當(dāng)a<-1時(shí),fmin(x)=f(-1)=1+2a;
當(dāng)-1≤a<1時(shí),fmin(x)=f(a)=-a2;
當(dāng)a≥1時(shí),fmin(x)=f(1)=1-2a,
綜上可得fmin(x)=
1+2a,a<-1
-a2,-1≤a<1
1-2a,a≥1
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=a-
2
2x+1
(a∈R)
(1)判斷函數(shù)f(x)的單調(diào)性并給出證明;
(2)若存在實(shí)數(shù)a使函數(shù)f(x)是奇函數(shù),求a;
(3)對(duì)于(2)中的a,若f(x)≥
m
2x
,當(dāng)x∈[2.3]恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù),且是奇函數(shù),當(dāng)x>0時(shí),f(x)=
x
3
-2x
(1)求f(x)的解析式;
(2)解關(guān)于t的不等式f[lg(t+1)]+f[1-lgt]<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的函數(shù)y=log
1
2
(x2+ax+2a+5)的值域?yàn)镽,命題q:關(guān)于a的不等式a2-2a+1-m2≥0(m>0)的解集;
(1)當(dāng)m=4時(shí),若p∧q為真,求a的取值范圍;
(2)若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(1,
2
2
),其焦距為2.

(Ⅰ)求橢圓C1的方程;
(Ⅱ)已知橢圓具有如下性質(zhì):若橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),則橢圓在其上一點(diǎn)A(x0,y0)處的切線方程為
x0x
a2
+
y0y
b2
=1,試運(yùn)用該性質(zhì)解決以下問題:
(i)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(ii)如圖(2),過橢圓C2
x2
8
+
y2
2
=1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
4
+x)=-
1
2

(Ⅰ)求tan2x的值;
(Ⅱ)若x是第二象限的角,化簡三角式
1+sinx
1-sinx
+
1-sinx
1+sinx
,并求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三維直角坐標(biāo)系中,已知A(1,1,1),B(2,2,2),C(3,2,4),求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-m|,x∈R.且f(4)=0,
(1)求實(shí)數(shù)m的值.
(2)作出函數(shù)f(x)的圖象.
(3)根據(jù)圖象寫出f(x)的單調(diào)區(qū)間,寫出不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知log35=2a,3b=7,用a,b表示log359.
(2)計(jì)算:lg25+
2
3
lg8+lg5×lg20+(lg2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案