12.二項(xiàng)式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中$\sqrt{x}$的系數(shù)是(  )
A.-$\frac{15}{2}$B.$\frac{15}{2}$C.-$\frac{35}{8}$D.$\frac{35}{8}$

分析 先求出二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于$\frac{1}{2}$,求得k的值,即可求得展開式中的含$\sqrt{x}$的項(xiàng)的系數(shù)值即可.

解答 解:設(shè)第(k+1)項(xiàng)是$\sqrt{x}$,
則第(k+1)項(xiàng)是${C}_{10}^{k}$${(\frac{\sqrt{x}}{2})}^{10-k}$${(-\frac{2}{x})}^{k}$=${C}_{10}^{k}$•2k-10•(-2)k•${x}^{\frac{1}{2}(10-k)-k}$,
故$\frac{1}{2}$(10-k)-k=$\frac{1}{2}$,解得:k=3,
∴${C}_{10}^{k}$•2k-10•(-2)k=${C}_{10}^{3}$•2-7•(-2)3=-$\frac{15}{2}$,
故選:A.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,b=$\sqrt{6}$,∠A=45°,則∠C=15°或75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=sinx+cosx,x∈(0,π),且f′(x)=0,則x=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將函數(shù)y=sin2x的圖象向下平移1個(gè)單位,再向右平移$\frac{π}{4}$單位,則所得圖象的函數(shù)解析式為( 。
A.y=-cos2xB.y=-2sin2xC.y=-2cos2xD.y=sin(2x-$\frac{π}{4}$)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在數(shù)列{an}中,a1=2,an+1=2an-n+1,n∈N*
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)設(shè)bn=$\frac{a_n}{2^n}-\frac{1}{2}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若向量$\overrightarrow a$與$\overrightarrow a+2\overrightarrow b$的數(shù)量積為6,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.當(dāng)實(shí)數(shù)a取何值時(shí),在復(fù)平面內(nèi)與復(fù)數(shù)z=(m2-4m)+(m2-m-6)i對應(yīng)點(diǎn)滿足下列條件?
(1)在第三象限;
(2)在虛軸上;
(3)在直線x-y+3=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中a的值;
(2)分別求出這組數(shù)據(jù)的中位數(shù)與成績在[50,60)中的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在梯形ABCD中,AB∥DC,AD⊥AB,AD=DC=1,AB=2,點(diǎn)P,Q分別在線段BC,CD上運(yùn)動(dòng),且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$.
(1)當(dāng)λ=$\frac{1}{2}$時(shí),求|$\overrightarrow{AP}$|;
(2)求$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案