4.當(dāng)實(shí)數(shù)a取何值時(shí),在復(fù)平面內(nèi)與復(fù)數(shù)z=(m2-4m)+(m2-m-6)i對(duì)應(yīng)點(diǎn)滿足下列條件?
(1)在第三象限;
(2)在虛軸上;
(3)在直線x-y+3=0上.

分析 復(fù)數(shù)z=(m2-4m)+(m2-m-6)i,對(duì)應(yīng)點(diǎn)的坐標(biāo)為Z(m2-4m,m2-m-6).
(1)點(diǎn)Z在第三象限,則$\left\{{\begin{array}{l}{{m^2}-4m<0}\\{{m^2}-m-6<0}\end{array}}\right.$,解得即可.
(2)點(diǎn)Z在虛軸上,則$\left\{{\begin{array}{l}{{m^2}-4m=0}\\{{m^2}-m-6≠0}\end{array}}\right.$,解得m即可.
(3)點(diǎn)Z在直線x-y+3=0上,則(m2-4m)-(m2-m-6)+3=0,解出即可.

解答 解:復(fù)數(shù)z=(m2-4m)+(m2-m-6)i,對(duì)應(yīng)點(diǎn)的坐標(biāo)為Z(m2-4m,m2-m-6).
(1)點(diǎn)Z在第三象限,則$\left\{{\begin{array}{l}{{m^2}-4m<0}\\{{m^2}-m-6<0}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{0<m<4}\\{-2<m<3}\end{array}}\right.$,∴0<m<3.
(2)點(diǎn)Z在虛軸上,則$\left\{{\begin{array}{l}{{m^2}-4m=0}\\{{m^2}-m-6≠0}\end{array}}\right.$,解得m=0,或m=4.
(3)點(diǎn)Z在直線x-y+3=0上,則(m2-4m)-(m2-m-6)+3=0,即-3m+9=0,∴m=3.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)相等、幾何意義、方程與不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)正方形ABCD的邊長為1,則|$\overrightarrow{AB}$-$\overrightarrow{BC}$+$\overrightarrow{AC}$|等于( 。
A.0B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若拋物線$y=\frac{1}{8}{x^2}$的焦點(diǎn)F與雙曲線x2-y2=a的一個(gè)焦點(diǎn)重合,則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.二項(xiàng)式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中$\sqrt{x}$的系數(shù)是( 。
A.-$\frac{15}{2}$B.$\frac{15}{2}$C.-$\frac{35}{8}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.給出下列五個(gè)命題:
①某班級(jí)一共有52名學(xué)生,現(xiàn)將該班學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知7號(hào),33號(hào),46號(hào)同學(xué)在樣本中,那么樣本另一位同學(xué)的編號(hào)為23;
②一組數(shù)據(jù)1、2、3、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③一組數(shù)據(jù)a、0、1、2、3,若該組數(shù)據(jù)的平均值為1,則樣本標(biāo)準(zhǔn)差為2;
④一組樣本數(shù)據(jù)中,中位數(shù)唯一,眾數(shù)不一定唯一.
⑤如圖是根據(jù)抽樣檢測后得出的產(chǎn)品樣本凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克,并且小于104克的產(chǎn)品的個(gè)數(shù)是90.
其中正確的為②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)P(x,y)是圓(x+2)2+y2=1上任意一點(diǎn),則$\frac{y-2}{x-1}$的最大值為$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在三角形ABC中,∠A=90°,AB=AC=1,則$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.-1B.1C.$\sqrt{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z=(a2-2a-3)+(a2-1)i,(a∈R,i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為(  )
A.3B.-3C.-1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a,b是實(shí)數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導(dǎo)函數(shù),若f′(x)g′(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致.
(Ⅰ)討論f(x)的極值;
(Ⅱ)設(shè)a>0,若函數(shù)f(x)和g(x)在區(qū)間[-2,+∞)上單調(diào)性一致,求實(shí)數(shù)b的取值范圍;
(Ⅲ)設(shè)a<0,且a≠b,若函數(shù)f(x)和g(x)在以a,b為端點(diǎn)的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案