A. | [1,2] | B. | [1,$\sqrt{2}$] | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$] |
分析 f(x)的定義域為[1,2],由1≤x2≤2,求得x的取值范圍得f(x2)的定義域,再與f(x)的定義域取交集得答案.
解答 解:∵函數(shù)f(x)的定義域為[1,2],
∴由1≤x2≤2,得$-\sqrt{2}≤x≤-1$或1$≤x≤\sqrt{2}$.
∴f(x2)的定義域為[$-\sqrt{2},-1$]∪[$1,\sqrt{2}$].
把f(x)的定義域與f(x2)的定義域取交集可得:
函數(shù)f(x)+f(x2)的定義域為[$1,\sqrt{2}$].
故選:B.
點評 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的求解方法,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {(0,1),(1,2)} | C. | {x|x≥1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | ±$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)的最小值為e | B. | f(x)的最大值為e | C. | f(x)的最小值為$\frac{1}{e}$ | D. | f(x)的最大值為$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com