18.已知點(diǎn)A(1,2$\sqrt{2}$),B(0,0),C(1,0),設(shè)∠BAC的平分線AE與BC相交于E,如果$\overrightarrow{BC}$=λ$\overrightarrow{CE}$,那么λ等于-$\frac{3+2\sqrt{2}}{2\sqrt{2}}$.

分析 由條件利用三角形內(nèi)角平分線的性質(zhì),共線向量定理,求得λ的值.

解答 解:由條件利用三角形內(nèi)角平分線的性質(zhì)可得$\frac{BE}{EC}$=$\frac{AB}{AC}$=$\frac{3}{2\sqrt{2}}$,如圖所示:
設(shè)BE=3k,則 EC=2$\sqrt{2}$k,BC=(3+2$\sqrt{2}$)k.
如果$\overrightarrow{BC}$=λ$\overrightarrow{CE}$,則(3+2$\sqrt{2}$)k=-λ•2$\sqrt{2}$k,
求得λ=-$\frac{3+2\sqrt{2}}{2\sqrt{2}}$,
故答案為:-$\frac{3+2\sqrt{2}}{2\sqrt{2}}$.

點(diǎn)評(píng) 本題主要考查三角形內(nèi)角平分線的性質(zhì),共線向量定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)實(shí)數(shù)a=log32,b=log0.84,c=20.3,則( 。
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求$\underset{lim}{x→∞}$[xln(1-$\frac{1}{3x}$)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知變量x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍為[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿足a1=2,且an+1=2an+(2n-1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.直棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(1)求證:AC⊥B1C;
(2)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
(3)當(dāng)$\frac{BD}{AB}$=$\frac{3}{7}$時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體被切割后剩下部分的幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.18B.20C.$18+2\sqrt{3}$D.$18+4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(1)求實(shí)數(shù)a、b的值;
(2)若不等式$f({log_2}k)>f(\frac{3}{2})$成立,求實(shí)數(shù)k的取值范圍;
(3)對(duì)于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N,n≥3)的自變量x0,x1,x2,…,xn-1,xn,如果存在一個(gè)常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個(gè)函數(shù)m(x),有|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱m(x)為區(qū)間[p,q]上的有界變差函數(shù),試判斷f(x)是否區(qū)間[0,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若a+1,2a+2,3a+5成等比數(shù)列,則實(shí)數(shù)a的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案